
Interested in learning
more about security?

SANS Institute
InfoSec Reading Room
This paper is from the SANS Institute Reading Room site. Reposting is not permitted without express written permission.

A Taste of Scapy
Scapy,a Python packet crafting tool,has become my new BFF. Have you ever envisioned that there may be an easy
way to craft a TCP session beginning with the TCP three-way handshake so that you can emulate a client side of
a TCP connection?

Copyright SANS Institute
Author Retains Full Rights

AD

http://www.sans.org/info/36923
http://www.sans.org/info/36909
http://www.sans.org/info/36914
http://www.sans.org/reading_room/images/click.php?id=408

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Key	
 fingerprint	
 =	
 AF19	
 FA27	
 2F94	
 998D	
 FDB5	
 DE3D	
 F8B5	
 06E4	
 A169	
 4E46	

A Taste of Scapy

By Judy Novak

Introduction

Scapy, a Python packet crafting tool, has become my new BFF. Have you ever envisioned that there may
be an easy way to craft a TCP session beginning with the TCP three-way handshake so that you can
emulate a client side of a TCP connection?

I learned early on to avoid using any programming language that requires strictly typed variables, since I
seemed most adept at dumping core and generating segment faults rather than creating any useable code.
Yet, until Scapy arrived, crafting something as sophisticated as a TCP session was possible only using
less forgiving languages such as C. With a little knowledge and a handful of short lines of code, Scapy is
able to easily craft either the client or server side of a TCP session.

Having worked for five years at Sourcefire, the commercial company associated with Snort, my interest
then and now has been emulating the client side of a TCP connection to examine a particular destination
host operating system's response to some "unique" stimulus. One of the features that Snort has that no
other product I've tested has is something known as target-based knowledge. Simply stated, this means
that Snort can be configured with a specific TCP stream reassembly policy that is most appropriate for a
given destination host's or CIDR block's operating system. Different operating systems may react
uniquely to a given ambiguous or ill-defined aspect of behavior. When configured properly, this allows
Snort to reassemble a TCP session identically as the destination host operating system, thus avoiding TCP
evasions.

Take for instance the unusual behavior from a current Linux operating system running kernel 2.4 and
higher. Most operating systems adhere to the specifications of RFC 793 “Transmission Control Protocol”
that offers guidance for TCP implementations. The RFC specifies that all TCP segments after the initial
client SYN should have the acknowledgement flag set. However, current versions of Linux do not
require this and actually accept and acknowledge a segment in an established session where no TCP flags
are set and where the segment has payload. No other well-known current operating system accepts this
same segment.

Why is this useful knowledge? This offers valuable reconnaissance if you are attempting to fingerprint a
remote operating system to discover if it is running Linux. There is a tool called p0f that performs
operating system fingerprinting, but it examines and makes its determination from field values in the IP
and TCP headers of a SYN segment originating from the host. For example, it uses the TCP window size
value to aid in its assessment and matches it against expected TCP window sizes. If a savvy administrator
is aware of this and wants to thwart accurate p0f fingerprinting, she need only alter the TCP window size.
This may have some unintended adverse consequences, but there are other lesser impact fields that may
be altered to evade detection. As well, some applications such as web server software advise changing
the TCP window size to maximize efficiency. This unintentionally foils p0f identification.

Yet a characteristic such as Linux acknowledging a segment with no TCP flags sent in the middle of a
TCP session is not easily changed unless you alter the source code. Therefore, using this behavior as an
operating system identification method is practically foolproof. How would you implement such an
application? With a little background knowledge, this is fairly simple to achieve using Scapy.
Let's recap the requirements for the session we would need to code this:

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Key	
 fingerprint	
 =	
 AF19	
 FA27	
 2F94	
 998D	
 FDB5	
 DE3D	
 F8B5	
 06E4	
 A169	
 4E46	

♦ We need to create the three-way handshake
♦ We need to be able to control the TCP flag value supplied in the TCP header
♦ We need to assign the data payload

Oh, did I mention that creating the three-way handshake requires the crafter to listen for the server’s
SYN/ACK response to extract its TCP sequence number, increment the value by one, and place the new
value in the acknowledgement number field? This is a tall order; but Scapy provides the tool to make all
these requirements very manageable.

Crafting the Three-way Handshake

Crafting a run-of-the-mill type of packet where we do not care about the response is actually fairly trivial
and is easily accomplished using any of a number of command line tools such as hping3, sendip, and
nemesis, to name a few. However, these tools are inappropriate if you need to listen for a response and
extract a particular field from the response as required by the client to acknowledge the server’s Initial
Sequence Number (ISN). Scapy has a command that allows you to craft a SYN request and match the
corresponding returned SYN/ACK segment. The SYN/ACK sequence number is easily extracted and
incremented for use in the client’s acknowledgement value. First, let’s examine what we need to do using
pseudo-code:

• Send the client’s SYN to a listening server
o Craft an IP header containing the source and destination IP addresses
o Craft a TCP header where we generate the TCP source port, assign the destination port

that the server listens on, set the TCP flags to turn the SYN bit on, and generate the
client’s ISN

• Listen for the server’s response
o Save the server’s response
o Extract the server’s TCP sequence number and increment the value by one

• Craft the client’s acknowledgement of the server’s response

o Craft an IP header containing the same source and destination IP addresses on the SYN
o Craft a TCP header where with the same SYN segment TCP source and destination ports,

set the TCP flags to turn the ACK bit on, increment the client’s ISN by one since the
SYN consumes one sequence number, set the acknowledgement value to the incremented
server’s sequence number value

Let’s suppose this is an abbreviated tcpdump-like display of the three-way handshake:

	

	

	

	

	

	

Assuming that there are default values for other IP and TCP headers, we need to accomplish the
following:

• Send the client’s SYN to a listening server
o Craft an IP header containing the source IP 192.168.1.103 and destination IP

192.168.1.104

192.168.1.103	
 1024	
 >	
 192.168.1.104	
 80	
 	
 	
 flags=SYN	
 seq=12345	
 	

192.168.1.104	
 80	
 	
 	
 	
 	
 	
 >	
 192.168.1.103	
 1024	
 flags=SYN,	
 ACK	
 seq=9998	
 ack=12346	

192.168.1.103	
 1024	
 >	
 192.168.1.104	
 80	
 	
 	
 flags=ACK	
 seq=12346	
 ack=9999	

	

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Key	
 fingerprint	
 =	
 AF19	
 FA27	
 2F94	
 998D	
 FDB5	
 DE3D	
 F8B5	
 06E4	
 A169	
 4E46	

o Craft a TCP header where we generate the TCP source port 1024, assign the destination
port 80, set the TCP flags to turn the SYN bit on, and generate the client’s ISN of 12345

• Listen for the server’s response
o Save the server’s response
o Extract the server’s TCP sequence number 9998, and add 1 to get 9999

• Craft the client’s acknowledgement of the server’s response

o Craft an IP header containing the source IP 192.168.1.103 and destination IP
192.168.1.104

o Craft a TCP header where with the same TCP source port 1024, assign the destination
port 80, set the TCP flags to turn the ACK bit on, increment the client’s ISN by one to
12346, set the acknowledgement value to the incremented server’s sequence number
value – 9999

Ultimately, we would create a Python program to accomplish this because we do not want to perform this
interactively. But, we'll use Scapy's command line interface to demonstrate the code. You need to be
root or super user to craft Scapy packets because they are sent directly to the network card driver using
the PF_PACKET socket family protocol on our Linux host.

	

Let’s review what the above code does. First, we create an instance of an IP header called ip. Scapy is
case-sensitive so ip is different than IP. We define an IP header using Scapy’s IP and supply all the fields
and values between the left and right parentheses. We assign only the source IP address
src=”192.168.1.103” and destination IP address using dst=”192.168.1.104”. Scapy uses default values
if you don’t define a given field. You can define any of the fields that are in the IP header; you can
discover what these are by executing the Scapy command ls(IP).

Now we define an instance of the TCP header called SYN. We use the same format of referencing
Scapy’s TCP header TCP and defining all the fields we want to change – the source and destination port,
the flags, and the sequence number. Again, if you wanted to examine the field names in the TCP header,
you could issue the command ls(TCP). Finally, we assemble an instance of a packet appropriately called
packet that is our IP layer ip layered with (indicated using the forward slash) our instance of the TCP
layer SYN.

We want to send this and capture the server’s response so that we can extract the server’s TCP sequence
number and acknowledge it.

	

	

user@desktop:	
 sudo	
 –s	
 	

user@desktop:	
 scapy	

	

Welcome	
 to	
 Scapy	
 (2.0.1)	

>>>ip=IP(src=”192.168.1.103”,	
 dst=”192.168.1.104”)	

>>>SYN=TCP(sport=1024,	
 dport=80,	
 flags=”S”,	
 seq=12345)	

>>>packet=ip/SYN	

	

>>>SYNACK=sr1(packet)	

>>>my_ack=SYNACK.seq	
 +	
 1	

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Key	
 fingerprint	
 =	
 AF19	
 FA27	
 2F94	
 998D	
 FDB5	
 DE3D	
 F8B5	
 06E4	
 A169	
 4E46	

	

The previous block of code sends one packet and matches the first response using Scapy’s Layer3
command sr1. Specifically, we send the packet we crafted and store the response from the server in an
instance of the packet called SYNACK. Next, we use the notation SYNACK.seq to extract the TCP
sequence number from the server and increment it by 1 and store the value in the variable my_ack.

	

Above, we create a new instance of the TCP header and call it ACK. It is very similar to the initial SYN
header we crafted for the SYN, but we change the flags field to have an acknowledgement flags="A", we
increment the sequence number by 1 to 12346 since the SYN consumes a sequence number, and finally
we place the acknowledgement value for the server’s sequence number in ack=my_ack. We send it using
the send command – a Layer 3 send that does not listen for a response. If we have done everything
correctly, we have just created the three-way handshake. All we have to do now is create the segment
with no TCP flags and payload and send it.

	

We create a new instance of a TCP header called PUSH and set the TCP flags field with no flags
flags="". All other field values remain the same. We assign some data payload and then send the new
packet layering our IP header ip, TCP header PUSH, and payload data. We should see a TCP
acknowledgement of this segment if the destination host is a Linux server.

Complications

There is an impediment to crafting TCP sessions via Scapy because it circumvents the native TCP/IP
stack. What this means is that the host is unaware that Scapy is sending packets. This has an unpleasant
side effect because the native host will be confused when the server responds with the SYN/ACK. As far
as the native host’s TCP/IP stack is concerned, it never sent a SYN and does not expect a SYN/ACK in
return. It’s as if the native host just received a rogue unsolicited SYN/ACK that is not associated with
any open session/socket it knows about. Therefore, the host resets the connection when it receives the
SYN/ACK. And, that isn’t what we want at all. That’s “game over” right then and there.

The resolution for this is to use the host’s firewall, such as iptables, to block the outbound resets. For the
above session we’d issue the following on the command line (outside of Scapy):

This drops all outbound packets that are TCP and destined for IP address 192.168.1.104 from source IP
192.168.1.103 to destination port 80 where the flags field reset bit should be examined, and if it is set,
drop the packet. This doesn’t prevent the originating host from generating a reset each time it receives a
packet from this session, but it blocks it from leaving the host. This “silences” the reset and you and
Scapy are able to craft the rest of the session.

>>>ACK=	
 TCP(sport=1024,	
 dport=80,	
 flags=”A”,	
 seq=12346,	
 ack=my_ack)	

>>>send(ip/ACK)	

	

>>>PUSH=(
 sport=1024,	
 dport=80,	
 flags=””,	
 seq=12346,	
 ack=my_ack)	

>>>data=”SEND	
 THIS!”	

>>>send(ip/PUSH/data)	

root@desktop:	
 iptables	
 –A	
 OUTPUT	
 –p	
 tcp	
 –d	
 192.168.1.104	
 –s	
 192.168.1.103	
 -­‐	
 -­‐dport	
 80	
 -­‐	
 -­‐tcp-­‐flags	
 RST	

RST	
 –j	
 DROP	

	

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Key	
 fingerprint	
 =	
 AF19	
 FA27	
 2F94	
 998D	
 FDB5	
 DE3D	
 F8B5	
 06E4	
 A169	
 4E46	

Conclusion

While this was a whirlwind introduction to Scapy, it is obvious how useful it can be once you understand
its benefits and side effects. It takes a little time and some hands-on experience to become comfortable
with Scapy. But it’s an amazingly powerful tool once you do.

If you’re interested in learning more about Scapy, SANS offers a new one-day course, SEC567 “Power
Packet Crafting Using Scapy”.

http://www.sans.org/security-training/power-packet-crafting-with-scapy-1382-mid

This course is jam-packed with hands-on exercises where you learn to craft this session and many others.

	

Last Updated: December 17th, 2012

Upcoming SANS Training
Click Here for a full list of all Upcoming SANS Events by Location

SANS Anaheim 2013 Anaheim, CAUS Jan 09, 2013 - Jan 14, 2013 Live Event

SANS Security East 2013 New Orleans, LAUS Jan 16, 2013 - Jan 23, 2013 Live Event

North American SCADA and Process Control Summit 2013 Lake Buena Vista, FLUS Feb 06, 2013 - Feb 15, 2013 Live Event

SANS Delhi 2013 New Delhi, IN Feb 11, 2013 - Feb 22, 2013 Live Event

SANS Scottsdale 2013 Scottsdale, AZUS Feb 17, 2013 - Feb 23, 2013 Live Event

SANS Belgium 2013 Brussels, BE Feb 18, 2013 - Feb 23, 2013 Live Event

RSA Conference 2013 San Francisco, CAUS Feb 24, 2013 - Feb 25, 2013 Live Event

SANS Secure Singapore 2013 Singapore, SG Feb 25, 2013 - Mar 02, 2013 Live Event

SANS South Africa 2013 Johannesburg, ZA Mar 04, 2013 - Mar 09, 2013 Live Event

SANS 2013 Orlando, FLUS Mar 08, 2013 - Mar 15, 2013 Live Event

SEC528: SANS Training Program for the CompTIA New
Advanced Security Practitioner Certification

OnlineDCUS Jan 07, 2013 - Jan 11, 2013 Live Event

SANS OnDemand Books & MP3s OnlyUS Anytime Self Paced

http://www.sans.org/info/36919
http://www.sans.org/link.php?id=28624
http://www.sans.org/anaheim-2013
http://www.sans.org/link.php?id=29439
http://www.sans.org/security-east-2013
http://www.sans.org/link.php?id=28439
http://www.sans.org/north-american-scada-2013
http://www.sans.org/link.php?id=30555
http://www.sans.org/delhi-2013
http://www.sans.org/link.php?id=29035
http://www.sans.org/scottsdale-2013
http://www.sans.org/link.php?id=30217
http://www.sans.org/belgium-2013
http://www.sans.org/link.php?id=30450
http://www.sans.org/rsa-conf-2013
http://www.sans.org/link.php?id=30585
http://www.sans.org/singapore-2013
http://www.sans.org/link.php?id=30777
http://www.sans.org/south-africa-2013
http://www.sans.org/link.php?id=30022
http://www.sans.org/sans-2013
http://www.sans.org/link.php?id=30480
http://www.sans.org/sec528-beta-2013
http://www.sans.org/link.php?id=1032
http://www.sans.org/ondemand/about.php

