Version Control with Subversion
For Subversion 1.2

(book compiled from Revision 2147)

Ben Collins-Sussman
Brian W. Fitzpatrick
C. Michael Pilato

Version Control with Subversion: For Subversion 1.2: (book com-
piled from Revision 2147)
by Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michagl Pilato

Published (TBA)
Copyright © 2002, 2003, 2004, 2005, 2006 Ben Collins-SussmanBrian W. FitzpatrickC. Michael Pilato

This work is licensed under the Creative Commons Attribution Licenses To view a copy of this license, visit ht-
tp://creativecommons.org/licenses/by/2.0/ or send aletter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/

Table of Contents

0T Y0 o P Xi
1= = o PP Xiii
AUAIBNCE ..ot et et et et e e e e e aaans Xiii
HOW t0 R8O thIS BOOK ... ceeiiii ettt Xiii
Conventions USed iN ThISBOOKuuuiiiiiiiiiiiiii e e et e et eeeetn e eeees Xiv
TypPOgraphiC CONVENIONSveuiieiieiieee eean s Xiv

oo P Xiv
Organization Of TRISBOOKuiiiiiiiiiiii e XV
TRISBOOK IS IR ...ttt et e et e et e et e e e e eaens XVi
F e (g Te Y=o o 0 1= XVi
From Ben COllINS-SUSSIMEBNcvevtieeiiiieeee ittt e ettt e e e et e e e et e e e eaan s XVii

From Brian W. FItZPatriCKcoouniieiiii e e e e e e XVii

From C. MiCh@el PIELOccouniiiiiei e e e Xvii

O o1 oo [1 o o PP PPPRR 1
WHEL 1S SUDVEISION? ...ttt ettt et e et e et e et e e et et et e e et e e et e e ean e aeanaaeanaes 1
ST o)V £ Lo g K] 1S o] Y 1
SUDVEISION'S FEBIUMES ...ttt e et e et e e et et e e e e et e e e et e e e e et e e e eranaes 2
SUBVEISION'S ATCIITECTUIE .. .eeetiii ettt e e e e e et e e e et e e e e aan s 3
INSEAITING SUDVEISION ...ttt e ettt e e ettt e e e et e e eaaa e eaees 4
SUDVEISION'S COMPONENESeeetieeetii ettt ettt et e e et e et et e e et et e e et et e e e e et e e et ab e e e enbaes 5
F N O U Tox Q= 5
A TS ol e oo S 8
QIR 00 10 Y/ 8
VA= £ T g T 1o 1Y oo = R 8
The Problem of File-Sharingco.oiiiiii e 9

The Lock-Modify-Unlock SOIULIONuuiiiiiieeiii e 9

The Copy-Modify-Merge SOIULIONcouuiiiiiie e 11
SUDVEISION TN ACLION .ottt et et et e e et e e et e e et e ean e eees 13
RVAY 0T 0 o o 1= 13
REVISIONS ..t e e aee 16

How Working Copies Track the REDOSITONYc.uuiiiiiiiiiiiiiiie e 17
Mixed ReviSion WOrKing COPIESccuuueiiiiiieee ettt ettt e e e e et e e 18
SUMIMIEIY ettt ettt et e et et ettt et et e e e e et e et e e e e e et e et e e en e e en e et e et e eaaenns 19
I C 10 o (= B o 11 | PP PPP 20
1= PSP 20
010700 P 20
Revisions. Numbers, Keywords, and Dates, Oh MY! ... 20
REVISION NUMDEY'S ... et e e e e e et e e ean e eeees 20
REVISION KEYWOITS ...t e e et e e e e e e et e ean e aeees 21
REVISION DEIES ...ttt et e et e et e et e e e et e eaes 22

F TR O gT= o (o | PP 23
2T S T oYY o] Q1Yo = P 25
Update Your WOrKing COPYuuueieiiieeiiiae ettt e et e e ee e e eaae e eees 25
Make Changesto Y our WOrking COPYcccuvuueiiiiiieiiiie ettt e et 26
EXamMIiNe YOUr CRENQESceuiiiiieii ettt e ettt e et e e e e ean e aeees 27
Resolve Conflicts (Merging Others Changes)covviiiiiii i 33
(00001401 A o0 [011 7= 1410 L= 36
LGz 1T T o o S o P 37
SV TOQ ettt 38

LS Y o T i PP 39

SV o | TP 41

Sy 0 I PP PPTRPRRN 41

A FINal WOrd ON HISIONY ..uieiiii e e e e e e e e e e e e ean e eees 42

Version Control with Subversion

Other USEful COMMEBNGSciviriieiiiiii et e e e e et e e et e e et e e e et e eeenans 42
LY e == U o P 42

Y I 0] oo A PSPPSR 43
SUMIMIBIY ettt ettt e et e et e e e e ettt et et e e et et e e et e e et e e e ra e eea e eees 43
4. BranChing @N0 MEIGINGccuuieuneiieiii et e e e e et e e et e e et e et e e et e e et e e ean e ean e eeanaaeanaes 44
WHEL'S @BFaNCNT? ... et et et 44
L0 LS T a0 = 1 - P 44
Creating @BranCh ... 46
WOrking With YOUr BranChoouuuiiiiii e 48

The Key Concepts Behind BranChesoooviiiiiiiiii e 50
Copying Changes Between BranChescoouiiiiiiiiii e 50
Copying SPECITiC CRANGEScuuiiiiie e 51

The Key Concept BENiNAd MEIGINGc.uieiiiieiii et e e e e e e e e e e e e eanaees 53

Best PractiCeS fOr MEITING ...vvuiee e et e e e e e e e e e e e e e e e e eeees 54
COMIMON USE-CBSES ..uuiiiiiieit ettt ettt et e e e e e e e e e e e et e an e e e e et e et e e aenns 57
Merging aWhole Branch t0 ANOLNEYc.uuiiiiiiii e 57
UNAOING CRENJES ... ettt e e et e et e et e e et e e ean e e ean e aeees 59
Resurrecting DEleted [tEMSiiiii e 60
Common BranChing Patternscciuuiiiiiieii e e e e e e e aaas 61
STV (e T o = YA o g (T o] o 63
1= PSPPI 64
Creating @SIMPIE TAG ...cevu ettt 65
Creating @ COMPIEX TAO .. cvuniein et e e e e e e e e aaas 65
BranCh MaiNTENANCE et e e et e et e e e e e ean e 66
LS 00 1S 0 YA - Yo U | 66

Data LIfEUIMES ...t e et e et e e e et eeeaaa e eees 67
SUMIMIBIY ettt ettt ettt et et et e e et et e e et e e et e e e e e e e e enes 68
5. REPOSITOrY AMINISIIEIIONieeiiti ettt ettt ettt e e et e et e e e e enb e e enans 69
REPOSITONY BaSICS ...t eeetie ettt ettt e et et e ettt e et e e et e et e et e e ta e e e e ea e 69
Understanding Transactions and REVISIONScc.viuiiiiii e e e 69
UNVErSiONEd PrOPEITIEScvveiiiii e e e e e e e e e e ean e eaes 70
RS 00 LS 0 YA B = B (] - 70
Repository Creation and ConfigUrationooeuuuieiiiiiie e 72
HOOK SCITDES vttt e et e e e et e e e eeta e eaees 74
Berkeley DB CONfiQUIAiONiiuiiieei et e et e e e e et e eean e eeees 77
REPOSITOrY MaINTENANCEcee ittt et e et et e et e e e e eean e 77
AN AAMINISIFAIONS TOOIKIT «..vvieeeee e e e aa s 77

LS 001 1 (0 YA O = o o 85
MaNaging DiSK SPACEceuuieiiiiie e 87
REDOSITONY RECOVEIY ...ttt e et e e et e e eaba e eees 88
Migrating @ REPOSITONYieeiiee et e et et e e et e e e e ean e aeees 89
REPOSITONY BACKUD ..eeeiieiii ettt 93

o o] o e 0= = 9
ChooSiNg @ REPOSITONY LAYOULcceuueiieeeeieeei e e ee e e e e e e e e e e e e e e e eeannas 95
Creating the Layout, and Importing Initial Dataoooeeiuiiiiiiiiiniii e 96
SUMIMIBIY ettt ettt ettt et et et et e e et et e e et et e e et e e et e e e r e e ea e eees 97
SRS aV= g @e 11 To 0] 1 o] o H PP 98
L@ < oV T PP 98
= AoV, oo = ST 99
REQUESES aNA RESPONSES ... cvvtiiieieeeieee e e e e e e e e e e e e e e e e e et s e et e e e e e e e eanaeeanaeeees 99
Client CredentialS Cachingoceeuuuieiiii e eeaans 99
Y S Y= Lol (00 (1S = LY < S PP 101
INVOKING ThE SEIVEN ..o et e e s 101
Built-in authentication and aUthOriZatIONviiuiiiii e 103

SSH authentication and authOriZatiONoovvvuiiiiiii e 105

SSH CONfigUIELiON tHICKS ...vvvieei e e e e e e e e e et eeaneeeees 106
httpd, the APaChe HT TP SEIVEL ... e 108
PrEIEOUISITESeeeiieii ettt e et et 108

Version Control with Subversion

Basic Apache ConfigUIatioNcc.uiiiiiieiii e e e e e e e e e e e e aanaees 109

PN T 11070110 1 o @] o1 o o 110
AULNOMZALTON OPLIONS ... ettt et e e e e e e s 114
(= Y €00 o [1= PP 119
Supporting Multiple Repository ACCESS MELhOUSoiiuiiiiiiii e 121
AoV g (o o B o] o] o= PSPPSR 123
RUNtIME CONFIQUIAtioON ATEA .. .vvuieiiiieee et e e e e et e et e e et e e e e eannas 123
Configuration Ar€ALAYOULceuueiiiieiii e e e e e e e e e e e e eeees 123
Configuration and the WindoWS REJISIIYiiiiiiiiiiiiieeeee e 124
ConfigUuIation OPLIONSeeeeieeee ettt ettt e e et e et e e e et e e e eera e eeees 125
00 L= TP 129
WY PrOPEITIES? ...ttt et et e e e e e e e e aanas 129
Manipulating PrOPEItIESuuiiii et e e e e e e e e e e e 130
SPECIAl PrOPEITIES . oeu ettt 133
AULOMELIC PropeErty SEEING ... oeeeeeiieeiii et 141
LOCKITIG ettt e s 141
(01] gTo [[oTo G TP 142
DiISCOVENNG IOCKS ... e e e e e 145
Breaking and Stealing lOCKSovvuiiii e 145

LOCK COMMUNICEIION ...ttt e et e e et e e e et e e e e aan s 148

Peg and Operative REVISIONSiiiiiiii it 149
EXLErNalS DEFINITIONS .. .ouiiiiie et e e e e e e et e et e e e e eanas 152
Vendor DranChES e et 153
General Vendor Branch Management ProCedureoovueiiieiiiiiiiiii e eeeeaeeaas 154
SUN_108_ ISPl oeniei e 156
(oo [z 1o o PP 157
UNAerstanding IOCAIESvuu e 157
SUbVErSION'SUSE Of IOCAIES ... e 158
Using External DIfferencing TOOISccuuiiiiiiie e e 159
EXtErNal diff ... e 160
EXErnal diff3 ..o 161
SUbVErSioN REPOSITONY URLSieiiiiiiii i et e e e e e e e e e e e e e e e e ean e e eanaees 162
8. DEVE OPEN INFOMMEBLIONeeeti ettt e et e e ettt e e e et e e e e et e e e eeaaaeeees 164
Layered LiDrary DESIGNuueieiiiiee ettt ettt ettt 164
REPOSITONY LAYEE ...ttt et e ettt e et e et e e e e et e a e e ea e 165
REPOSITONY ACCESS LAYEN .. ieiiiii ettt et e ettt e et e e e e ean e 169

L0t 1= o I 1= 172

L LS T 0T I L= e 173
The Apache Portable RUNtIME LIibrarycooouiiiiiiiiiiiii e 173

URL and Path REQUIFEMENTScevuieiiiiii ettt 173
Using Languages Other than C and Coueiiiiiiii e 174
Inside the Working Copy AdMINiStration AFEa.............viiuuiiiiiiiiee e 177
THE ENIHES I oot et eeeeeas 178
Pristine Copies and Property FIIESccveiiiiicii e e e e 179
VB D AV e 179
Programming With MemOry POOISooiiiiiiiiiii e 180
ContribUtiNg tO SUDVEISIONcuiiiei ittt et e et e et e e et e et e e e e et e e eaneaeanas 182
JOINthe COMMUNILY ..uie e e e e e e e e e e e e e e e aeees 182
GELTNE SOUMCE COUR .. .eevvtieeeei ettt e et e et e e e e et e e e eatanaeeees 183
Become Familiar with Community POIICIESooveunieiiiiii e e 183
Make and TeSt YOUr ChanQESciieuin ittt e et 184
DONAE YOUN CRANGES ... iiitieeeiii ettt ettt e et e et e e et e eeeae s 184

9. Subversion Complete REFEIENCEiiiii e e e e e eees 185
The Subversion Command Line CHENt: SVNiiiiiiiiii e e 185
SVN SWITCHIES ..t e et 185

SVN SUBCOMIMENGS ...ttt e et e e et e e e et e e eenens 188

LS = o [0 211 o 250
SVNAAMIN SWITCHES ... eee et e e e e et e e e e eennas 250

Vi

Version Control with Subversion

SVNadMIiN SUDCOMIMANASuuniiiiii ettt e et e e e e e e et e eeeenns 251

LSV 0] oo PP 268
SVNIOOK SWITCNES ..oeiieii e e 268

LS] oo PP 269

S Y TP PP TPPR 285
SVNSEIVE SWITCNES ...t ettt et e e e e aanes 285

LSy 1Y =T o PP 286

a0 To o F= Y=Y/ o T 288
SUDVES SION PrOPENTIES ..oeeiiiiiii ettt e e e ettt e e e e et e e e eaba e eeees 289

AL SUBVErSION FOr CV SUSEIS ittt ee ittt e e e et e et e e et e e e e e et e e eaeeeanaaes 292
Revision Numbers Are DIfferent NOWco.u i 292

(D= ox 0 VAN A= £ T 0] 292
More DiSCONNECted OPEItONSiierieeeiieei e e e e e e e e e e e e e e e e e et e e et e e et eaaneeannas 293
Distinction Between Status and UpPateccovuiviiiiiiii e e e e e 293

S = 11 293

(6] e = (PP PRSPPI 294

BranChES 8N0 TaAGS .. euunietuiiiii ittt ettt e e et et e et e et e et e e et e et e e e e aa s 295
MEtadata PrOPEITIES ... ceiiiie et et ettt ettt et e e e 295

1000 g! [To a2 =='o 11 1o o U 295
Binary FIleSand TranSlalionoceuuiieieeei e e e e e e e e e e e e e e e e n e e e e e e e annas 295

VA= £ T g T= o 01, Ko o L1 =S 296

YU 1101= 01107 1o o PR 296
Converting a Repository from CVSt0 SUDVEISIONiiuuiiiiiiiii et e e 296

B. WEDDAYV and AULOVEISIONING ...uuvveiineiieitieiteeeee e et e et et e e et e et e et e et e ea e e aneeaneeseeneenaeanaaannns 298
BasiC WEDDAY CONCEPLS ...evuiiiiieiiiie i e e e et e e e e e et e e e e e e et e e et e e et e e et eeaneeannas 298
Original WEBDAY ...t 298

[oV = o] 299

SUBVErSION @NA DEITAVoeeiiiiee e e e e 299

F T 100V (= To o1 oo PP 300
Client INteroperabilityo.. i e 301
Standalone WEDDAY appliCationSovvuuieiiiiiiiii e e e e 302
File-explorer WEDDAY EXIENSIONScvveiiiiiieiii e e e e e e e e e e e e e e e e aaneees 303

WebDAYV filesystem implementationov it 304

C. THIrd Party TOOISeeetiieiiiiie ettt ettt ettt e et et e e et et e e e e et e e e e et e e e eenaaeeees 306
(DR @])Y/ ¢ o o | PP 307

Vii

List of Figures

S oY= = To g I o gL = = PP 3
2.1 A typical ClIENt/SEIVEr SYSEEIM ...uuiii i ee e e e e e e e e e e e e e e et e e et e e e an e e e eaeeannnees 8
2.2. The problemM t0 AV0Iiiiiii et et 9
2.3. The 1ock-modify-UnloCK SOIULTONuuniiiiiie et eaens 10
2.4. The copy-modify-Merge SOIULTONc.uiiiiiei e e e e e e e et e e e eaaas 11
2.5. The copy-modify-merge solution (CONtINUE)couiiiniiiiiiii e 12
2.6. The repoSItory'S fllESYSIEIMvei e e e e e e e 13
R I8 1= 1= 010 = 1) Y 16
4.1. Branches of deVEIOPIMENLuuiiiii e e et e et eeaaa s 44
4.2, SEArting rePOSITONY TAYOULuuiiieii ettt et e e e et e e e e eaaa s 45
4.3. REPOSITONY WIth NEW COPY ... ettt ettt et e et e e et e e e e e e aa e e ea e aean s 47
4.4. The branching of ONefilESNISIONYciviiii e 48
8.1. Filesand directorieS in tWo diMENSIONSouuiiiiii et e et e e eeaen e eees 166
8.2. Versioning time—the third dimension!cc.cooiiiiiiiii e 167

viii

List of Tables

2.1 REPOSITONY ACCESSURLS ...iviiiiiiiiii et e e e e e e e e e e e et e e e e e e e st eeaneeannes 15
5.1. Repository Data Store COMPAISONuu.ceeeeiiteeeieeei e eeieeeee e et e aet e e e e st e eea e e e e eean e eaneeennns 70
6.1. NetWOrk Server COMPAITSONuuu ettt ettt e et et et e e et e e e et e e e e bt e e e eaan e eeenans 98
8.1. A Brief Inventory of the SUbVersion Librariesooooiiiiiic e 164
B.1. CoOmMMON WEDDAY CHENLSetiiiiiiii ettt ettt e e e e et e et e e et e e e bn e aeaaaeanaes 301

List of Examples

5.1. txn-info.sh (Reporting Outstanding TranSaCtioNS)vcvueieiiiieeiiieii e e e e e e e e 86
6.1. A sample configuration fOr anNONYMOUS GCCESS.uuiverriieinieeiieeieeee e e et e e e e e e et e e et eeeanaeeaes 115
6.2. A sample configuration for authentiCatetd 8CCESS.ciiviiiiiiiii e 116
6.3. A sample configuration for mixed authenti cated/anonymoUS @CCESS.vvvvniviineiiiieeiiieeeieeeaeeen 116
6.4. Disabling path checks altOgetNeriii e 119
7.1. Sample Registration Entries (.reg) File. ... 124
40 o T 11 =" o 5= o 160
2 o [111 =" o o7 160
T iTF WD SN e et e 161
7.5, diffBWIAD0GE ..ee e e 161
8.1. USING the REPOSITONY LBYEN ... eeieieiiet ettt e e et e e e e e e e et e e eanaeeees 168
8.2. Using the Repository Layer With Python ... 174
8.3. A PYthON SEatUS CraWWleruuiii i e e e e e e e e et e e et e e e eeaes 176
8.4. Contentsof aTypical . SVN/ €Nt ri €S Fle ..o 178
8.5. EffECtiVE POOI USBIEcceiie ettt e et et 181

Foreword

A bad Frequently Asked Questions (FAQ) sheet is one that is composed not of the questions people ac-
tually asked, but of the questions the FAQ's author wished people had asked. Perhaps you've seen the
type before:

Q: How can | use Glorbosoft XY Z to maximize team productivity?

A: Many of our customers want to know how they can maximize productivity through our paten-
ted office groupware innovations. The answer is simple: first, click on the “Fi | €” menu, scroll
downto“l ncrease Productivity”,then...

The problem with such FAQs is that they are not, in aliteral sense, FAQs at all. No one ever called the
tech support line and asked, “How can we maximize productivity?’. Rather, people asked highly specif-
ic questions, like, “How can we change the calendaring system to send reminders two days in advance
instead of one?’ and so on. But it'salot easier to make up imaginary Frequently Asked Questions than it
is to discover the real ones. Compiling a true FAQ sheet requires a sustained, organized effort: over the
lifetime of the software, incoming questions must be tracked, responses monitored, and all gathered into
a coherent, searchable whole that reflects the collective experience of users in the wild. It cals for the
patient, observant attitude of a field naturalist. No grand hypothesizing, no visionary pronouncements
here—open eyes and accurate note-taking are what's needed most.

What | love about this book is that it grew out of just such a process, and shows it on every page. It is
the direct result of the authors' encounters with users. It began with Ben Collins-Sussman's observation
that people were asking the same basic questions over and over on the Subversion mailing lists: What
are the standard workflows to use with Subversion? Do branches and tags work the same way as in other
version control systems? How can | find out who made a particular change?

Frustrated at seeing the same questions day after day, Ben worked intensely over a month in the summer
of 2002 to write The Subversion Handbook, a sixty page manual that covered al the basics of using Sub-
version. The manua made no pretense of being complete, but it was distributed with Subversion and got
users over that initial hump in the learning curve. When O'Reilly and Associates decided to publish a
full-length Subversion book, the path of least resistance was obvious: just expand the Subversion hand-
book.

The three co-authors of the new book were thus presented with an unusua opportunity. Officialy, their
task was to write a book top-down, starting from a table of contents and an initial draft. But they also
had access to a steady stream—indeed, an uncontrollable geyser—of bottom-up source material. Subver-
sion was already in the hands of thousands of early adopters, and those users were giving tons of feed-
back, not only about Subversion, but about its existing documentation.

During the entire time they wrote this book, Ben, Mike, and Brian haunted the Subversion mailing lists
and chat rooms incessantly, carefully noting the problems users were having in rea-life situations. Mon-
itoring such feedback is part of their job descriptions at CollabNet anyway, and it gave them a huge ad-
vantage when they set out to document Subversion. The book they produced is grounded firmly in the
bedrock of experience, not in the shifting sands of wishful thinking; it combines the best aspects of user
manual and FAQ sheet. This duality might not be noticeable on a first reading. Taken in order, front to
back, the book is simply a straightforward description of a piece of software. There's the overview, the
obligatory guided tour, the chapter on administrative configuration, some advanced topics, and of course
a command reference and troubleshooting guide. Only when you come back to it later, seeking the solu-
tion to some specific problem, does its authenticity shine out: the telling details that can only result from
encounters with the unexpected, the examples honed from genuine use cases, and most of al the sensit-
ivity to the user's needs and the user's point of view.

Of course, no one can promise that this book will answer every question you have about Subversion.

Xi

Foreword

Sometimes, the precision with which it anticipates your questions will seem eerily telepathic; yet occa-
sionally, you will stumble into a hole in the community's knowledge, and come away empty-handed.
When this happens, the best thing you can do is email <user s@ubversion.tigris.org>and
present your problem. The authors are still there, still watching, and they include not just the three listed
on the cover, but many others who contributed corrections and original material. From the community's
point of view, solving your problem is merely a pleasant side effect of a much larger project—namely,
dowly adjusting this book, and ultimately Subversion itself, to more closely match the way people actu-
aly useit. They are eager to hear from you not merely because they can help you, but because you can
help them. With Subversion as with all active free software projects, you are not alone.

L et this book be your first companion.

— Karl Fogel, Chicago, 14 March, 2004

Xii

Preface

“If C gives you enough rope to hang yourself, think of Subversion as a sort of rope storage facil-
ity.” —Brian W. Fitzpatrick

In the world of open-source software, the Concurrent Versions System (CVS) has long been the tool of
choice for version control. And rightly so. CVS itself is free software, and its non-restrictive modus op-
erandi and support for networked operation—which allow dozens of geographically dispersed program-
mers to share their work—fits the collaborative nature of the open-source world very well. CVS and its
semi-chaotic development model have become cornerstones of open-source culture.

But like many tools, CVSis starting to show its age. Subversion is a relatively new version control sys-
tem designed to be the successor to CVS. The designers set out to win the hearts of CVS usersin two
ways: by creating an open-source system with a design (and “look and feel”) similar to CVS, and by at-
tempting to fix most of CV S's noticeable flaws. While the result isn't necessarily the next great evolution
in version control design, Subversion is very powerful, very usable, and very flexible.

This book is written to document the 1.2 series of the Subversion version control system. We have made
every attempt to be thorough in our coverage. However, Subversion has a thriving and energetic devel-
opment community, so there are already a number of features and improvements planned for future ver-
sions of Subversion that may change some of the commands and specific notes in this book.

Audience

This book is written for computer-literate folk who want to use Subversion to manage their data. While
Subversion runs on a number of different operating systems, its primary user interface is command-line
based. It is that command-line tool (svn) which is discussed and used in this book. For consistency, the
examples in this book assume the reader is using a Unix-like operating system, and is relatively comfort-
able with Unix and command-line interfaces.

That said, the svn program also runs on non-Unix platforms like Microsoft Windows. With a few minor
exceptions, such as the use of backward slashes (\) instead of forward slashes (/) for path separators,
the input to and output from this tool when run on Windows are identical to its Unix counterpart.
However, Windows users may find more success by running the examples inside the Cygwin Unix emu-
lation environment.

Most readers are probably programmers or system administrators who need to track changes to source
code. Thisisthe most common use for Subversion, and therefore it is the scenario underlying all of the
book's examples. But Subversion can be used to manage changes to any sort of information: images,
music, databases, documentation, and so on. To Subversion, all dataisjust data.

While this book is written with the assumption that the reader has never used version control, we've al'so
tried to make it easy for users of CVS to make a painless leap into Subversion. Special sidebars may dis-
cuss CV'S from time to time, and a special appendix summarizes most of the differences between CVS
and Subversion.

How to Read this Book

This book aims to be useful to people of widely different backgrounds—from people with no previous
experience in version control to experienced system administrators. Depending on your own back-
ground, certain chapters may be more or less important to you. The following can be considered a
“recommended reading list” for various types of readers:

Xiii

Preface

Experienced System Administrators
The assumption here is that you've probably used CV S before, and are dying to get a Subversion server up and
running ASAP. Chapter 5, Repository Administration and Chapter 6, Server Configuration will show you how
to create your first repository and make it available over the network. After that's done, Chapter 3, Guided Tour
and Appendix A, Subversion for CVS Users are the fastest routes to learning the Subversion client while draw-
ing on your CV'S experience.

New users
Your administrator has probably set up Subversion aready, and you need to learn how to use the client. If
you've never used a version control system (like CVS), then Chapter 2, Basic Concepts and Chapter 3, Guided
Tour are avital introduction. If you're already an old hand at CV'S, chapter 3 and appendix A are the best place
to start.

Advanced users
Whether you're a user or administrator, eventually your project will grow larger. You're going to want to learn
how to do more advanced things with Subversion, such as how to use branches and perform merges (Chapter 4,
Branching and Merging), how to use Subversion's property support, how to configure runtime options
(Chapter 7, Advanced Topics), and other things. These two chapters aren't vital at first, but be sure to read them
once you're comfortable with the basics.

Developers
Presumably, you're already familiar with Subversion, and now want to either extend it or build new software on
top of its many APIs. Chapter 8, Developer Information isjust for you.

The book ends with reference material—Chapter 9, Subversion Complete Reference is a reference guide
for al Subversion commands, and the appendices cover a number of useful topics. These are the
chapters you're mostly likely to come back to after you've finished the book.

Conventions Used in This Book

This section covers the various conventions used in this book.

Typographic Conventions

Constant width
Used for commands, command output, and switches

Constant width italic
Used for replaceableitemsin code and text

Italic
Used for file and directory names

lcons

2 Note
/ Thisicon designates a note relating to the surrounding text.

Xiv

Preface

ﬂ Tip
_) Thisicon designates a helpful tip relating to the surrounding text.

° Warning
Thisicon designates awarning relating to the surrounding text.

Note that the source code examples are just that—examples. While they will compile with the proper
compiler incantations, they are intended to illustrate the problem at hand, not necessarily serve as ex-
amples of good programming style.

Organization of This Book

The chapters that follow and their contents are listed here:

Chapter 1, Introduction
Covers the history of Subversion as well as its features, architecture, components, and install methods. Also in-
cludes a quick-start guide.

Chapter 2, Basic Concepts
Explains the basics of version control and different versioning models, along with Subversion's repository,
working copies, and revisions.

Chapter 3, Guided Tour
Walks you through a day in the life of a Subversion user. It demonstrates how to use Subversion to obtain,
modify, and commit data.

Chapter 4, Branching and Merging
Discusses branches, merges, and tagging, including best practices for branching and merging, common use
cases, how to undo changes, and how to easily swing from one branch to the next.

Chapter 5, Repository Administration
Describes the basics of the Subversion repository, how to create, configure, and maintain a repository, and the
tools you can useto do all of this.

Chapter 6, Server Configuration
Explains how to configure your Subversion server and the three ways to access your repository: HTTP, thesvn
protocol, and local access. It also covers the details of authentication, authorization and anonymous access.

Chapter 7, Advanced Topics
Explores the Subversion client configuration files, file and directory properties, how to i gnor e files in your
working copy, how to include external treesin your working copy, and lastly, how to handle vendor branches.

Chapter 8, Developer Information
Describes the internals of Subversion, the Subversion filesystem, and the working copy administrative areas
from a programmer's point of view. Demonstrates how to use the public APIs to write a program that uses Sub-
version, and most importantly, how to contribute to the development of Subversion.

Chapter 9, Subversion Complete Reference
Explains in great detail every subcommand of svn, svnadmin, and svnlook with plenty of examples for the
whole family!

Appendix A, Subversion for CVSUsers
Covers the similarities and differences between Subversion and CV'S, with numerous suggestions on how to

XV

Preface

break al the bad habits you picked up from years of using CVS. Included are descriptions of Subversion revi-
sion numbers, versioned directories, offline operations, update vs. status, branches, tags, metadata, conflict res-
olution, and authentication.

Appendix B, WebDAV and Autoversioning
Describes the details of WebDAV and DeltaV, and how you can configure your Subversion repository to be
mounted read/write asa DAV share.

Appendix C, Third Party Tools
Discusses tools that support or use Subversion, including alternative client programs, repository browser tools,
and so on.

This Book is Free

This book started out as bits of documentation written by Subversion project developers, which were
then coalesced into a single work and rewritten. As such, it has always been under a free license. (See
Appendix D, Copyright.) In fact, the book was written in the public eye, as a part of Subversion. This
means two things:

* Youwill alwaysfind the latest version of this book in the book's own Subversion repository.

* You can distribute and make changes to this book however you wish—it's under a free license. Of
course, rather than distribute your own private version of this book, we'd much rather you send feed-
back and patches to the Subversion developer community. See the section called “ Contributing to
Subversion” to learn about joining this community.

A relatively recent online version of this book can be found at http://svnbook.red-bean.com.

Acknowledgments

This book would not be possible (nor very useful) if Subversion did not exist. For that, the authors
would like to thank Brian Behlendorf and CollabNet for the vision to fund such a risky and ambitious
new Open Source project; Jim Blandy for the original Subversion name and design—we love you, Jm;
Karl Fogel for being such agood friend and a great community leader, in that order.

Thanks to O'Reilly and our editors, Linda Mui and Tatiana Diaz for their patience and support.

Finally, we thank the countless people who contributed to this book with informal reviews, suggestions,
and fixes: While this is undoubtedly not a complete list, this book would be incomplete and incorrect
without the help of: Jani Averbach, Ryan Barrett, Francois Beausoleil, Jennifer Bevan, Matt Blais, Zack
Brown, Martin Buchholz, Brane Cibgj, John R. Daily, Peter Davis, Olivier Davy, Robert P. J. Day, Mo
DelJong, Brian Denny, Joe Drew, Nick Duffek, Ben Elliston, Justin Erenkrantz, Shlomi Fish, Julian
Foad, Chris Foote, Martin Furter, Dave Gilbert, Eric Gillespie, Matthew Gregan, Art Haas, Greg Hud-
son, Alexis Huxley, Jens B. Jorgensen, Tez Kamihira, David Kimdon, Mark Benedetto King, Andreas J.
Koenig, Nuutti Kotivuori, Matt Kraai, Scott Lamb, Vincent Lefevre, Morten Ludvigsen, Paul Lussier,
Bruce A. Mah, Philip Martin, Feliciano Matias, Patrick Mayweg, Gareth McCaughan, Jon Middleton,
Tim Moloney, Mats Nilsson, Joe Orton, Amy Lyn Pilato, Kevin Pilch-Bisson, Dmitriy Popkov, Michael
Price, Mark Proctor, Steffen Prohaska, Daniel Rall, Tobias Ringstrom, Garrett Rooney, Joel Rosdahl,
Christian Sauer, Larry Shatzer, Russell Steicke, Sander Striker, Erik Sjoelund, Johan Sundstroem, John
Szakmeister, Mason Thomas, Eric Wadsworth, Colin Watson, Alex Waugh, Chad Whitacre, Josef Wolf,
Blair Zajac, and the entire Subversion community.

1oh, and thanks, Karl, for being too overworked to write this book yourself.

XVi

http://svnbook.red-bean.com

Preface

From

From

From

Ben Collins-Sussman

Thanks to my wife Frances, who, for many months, got to hear, “But honey, I'm still working on the
book”, rather than the usual, “But honey, I'm still doing email.” | don't know where she gets all that pa-
tience! She's my perfect counterbalance.

Thanks to my extended family for their sincere encouragement, despite having no actual interest in the
subject. (Y ou know, the ones who say, “ Ooh, you're writing a book?’, and then when you tell them it'sa
computer book, sort of glaze over.)

Thanks to all my close friends, who make me a rich, rich man. Don't look at me that way—you know
who you are.

Brian W. Fitzpatrick

Huge thanks to my wife Marie for being incredibly understanding, supportive, and most of all, patient.
Thank you to my brother Eric who first introduced me to UNIX programming way back when. Thanks
to my Mom and Grandmother for all their support, not to mention enduring a Christmas holiday where |
came home and promptly buried my head in my laptop to work on the book.

To Mike and Ben: It was a pleasure working with you on the book. Heck, it's a pleasure working with
you at work!

To everyone in the Subversion community and the Apache Software Foundation, thanks for having me.
Not a day goes by where | don't learn something from at least one of you.

Lastly, thanks to my Grandfather who always told me that “freedom equals responsibility.” | couldn't
agree more.

C. Michael Pilato

Special thanks to my wife, Amy, for her love and patient support, for putting up with late nights, and for
even reviewing entire sections of this book—you always go the extra mile, and do so with incredible
grace. Gavin, when you're old enough to read, | hope you're as proud of your Daddy as he is of you.
Mom and Dad (and the rest of the family), thanks for your constant support and enthusiasm.

Hats off to Shep Kendall, through whom the world of computers was first opened to me; Ben Collins-
Sussman, my tour-guide through the open-source world; Karl Fogel—you are my . ermacs; Greg Stein,
for oozing practical programming know-how; Brian Fitzpatrick—for sharing this writing experience
with me. To the many folks from whom | am constantly picking up new knowledge—keep dropping it!

Finally, to the One who perfectly demonstrates creative excellence—thank you.

XVii

Chapter 1. Introduction

Version control is the art of managing changes to information. It has long been a critical tool for pro-
grammers, who typically spend their time making small changes to software and then undoing those
changes the next day. But the usefulness of version control software extends far beyond the bounds of
the software development world. Anywhere you can find people using computers to manage information
that changes often, there is room for version control. And that's where Subversion comes into play.

This chapter contains a high-level introduction to Subversion—what it is; what it does; how to get it.

What is Subversion?

Subversion is a free/open-source version control system. That is, Subversion manages files and director-
ies over time. A tree of filesis placed into a central repository. The repository is much like an ordinary
file server, except that it remembers every change ever made to your files and directories. This alows
you to recover older versions of your data, or examine the history of how your data changed. In this re-
gard, many people think of aversion control system as a sort of “time machine”.

Subversion can access its repository across networks, which allows it to be used by people on different
computers. At some level, the ability for various people to modify and manage the same set of datafrom
their respective locations fosters collaboration. Progress can occur more quickly without a single conduit
through which all modifications must occur. And because the work is versioned, you need not fear that
quality is the trade-off for losing that conduit—if some incorrect change is made to the data, just undo
that change.

Some version control systems are also software configuration management (SCM) systems. These sys-
tems are specifically tailored to manage trees of source code, and have many features that are specific to
software development—such as natively understanding programming languages, or supplying tools for
building software. Subversion, however, is not one of these systems. It is a general system that can be
used to manage any collection of files. For you, those files might be source code—for others, anything
from grocery shopping lists to digital video mixdowns and beyond.

Subversion's History

In early 2000, CollabNet, Inc. (http://www.collab.net) began seeking developers to write a replacement
for CVS. CollabNet offers a collaboration software suite called CollabNet Enterprise Edition (CEE) Lof
which one component is version control. Although CEE used CVS asits initial version control system,
CVS's limitations were obvious from the beginning, and CollabNet knew it would eventually have to
find something better. Unfortunately, CV S had become the de facto standard in the open source world
largely because there wasn't anything better, at least not under a free license. So CollabNet determined
to write a new version control system from scratch, retaining the basic ideas of CVS, but without the
bugs and misfeatures.

In February 2000, they contacted Karl Fogel, the author of Open Source Development with CVS
(Corialis, 1999), and asked if he'd like to work on this new project. Coincidentally, at the time Karl was
aready discussing a design for a new version control system with his friend Jm Blandy. In 1995, the
two had started Cyclic Software, a company providing CV'S support contracts, and although they later
sold the business, they still used CV'S every day at their jobs. Their frustration with CV'S had led Jim to
think carefully about better ways to manage versioned data, and he'd already come up with not only the
name “ Subversion”, but also with the basic design of the Subversion repository. When CollabNet called,
Karl immediately agreed to work on the project, and Jim got his employer, Red Hat Software, to essen-
tially donate him to the project for an indefinite period of time. CollabNet hired Karl and Ben Collins-
Sussman, and detailed design work began in May. With the help of some well-placed prods from Brian

There's also a CollabNet Team Edition (CTE) offering aimed at smaller groups.

1

http://www.collab.net

Introduction

Behlendorf and Jason Robbins of CollabNet, and Greg Stein (at the time an independent developer act-
ive in the WebDAV/DeltaV specification process), Subversion quickly attracted a community of active
developers. It turned out that many people had had the same frustrating experiences with CV'S, and wel-
comed the chance to finally do something about it.

The original design team settled on some simple goals. They didn't want to break new ground in version
control methodology, they just wanted to fix CVS. They decided that Subversion would match CVS's
features, and preserve the same development model, but not duplicate CVS's most obvious flaws. And
although it did not need to be a drop-in replacement for CVS, it should be similar enough that any CVS
user could make the switch with little effort.

After fourteen months of coding, Subversion became “self-hosting” on August 31, 2001. That is, Sub-
version developers stopped using CV'S to manage Subversion's own source code, and started using Sub-
version instead.

While CollabNet started the project, and still funds a large chunk of the work (it pays the salaries of a
few full-time Subversion developers), Subversion is run like most open-source projects, governed by a
loose, transparent set of rules that encourage meritocracy. CollabNet's copyright license is fully compli-
ant with the Debian Free Software Guidelines. In other words, anyone is free to download, modify, and
redistribute Subversion as he pleases; no permission from CollabNet or anyone elseis required.

Subversion's Features

When discussing the features that Subversion brings to the version control table, it is often helpful to
speak of them in terms of how they improve upon CVSs design. If you're not familiar with CVS, you
may not understand all of these features. And if you're not familiar with version control at all, your eyes
may glaze over unless you first read Chapter 2, Basic Concepts, in which we provide a gentle introduc-
tion to version control in general.

Subversion provides:

Directory versioning
CV S only tracks the history of individual files, but Subversion implements a “virtual” versioned filesystem that
tracks changes to whole directory trees over time. Files and directories are versioned.

True version history
Since CVS is limited to file versioning, operations such as copies and renames—which might happen to files,
but which are really changes to the contents of some containing directory—aren't supported in CVS. Addition-
ally, in CVS you cannot replace a versioned file with some new thing of the same name without the new item
inheriting the history of the old—perhaps completely unrelated—file. With Subversion, you can add, delete,
copy, and rename both files and directories. And every newly added file begins with afresh, clean history al its
own.

Atomic commits
A collection of modifications either goes into the repository completely, or not at all. This allows developers to
construct and commit changes as logical chunks, and prevents problems that can occur when only a portion of a
set of changesis successfully sent to the repository.

Versioned metadata
Each file and directory has a set of properties—keys and their values—associated with it. You can create and
store any arbitrary key/value pairs you wish. Properties are versioned over time, just like file contents.

Choice of network layers
Subversion has an abstracted notion of repository access, making it easy for people to implement new network
mechanisms. Subversion can plug into the Apache HTTP Server as an extension module. This gives Subversion
a big advantage in stability and interoperability, and instant access to existing features provided by that serv-
er—authentication, authorization, wire compression, and so on. A more lightweight, standalone Subversion

Introduction

server processis also available. This server speaks a custom protocol which can be easily tunneled over SSH.

Consistent data handling
Subversion expresses file differences using a binary differencing agorithm, which works identically on both
text (human-readable) and binary (human-unreadable) files. Both types of files are stored equally compressed in
the repository, and differences are transmitted in both directions across the network.

Efficient branching and tagging
The cost of branching and tagging need not be proportional to the project size. Subversion creates branches and
tags by simply copying the project, using a mechanism similar to a hard-link. Thus these operations take only a
very small, constant amount of time.

Hackability
Subversion has no historical baggage; it is implemented as a collection of shared C libraries with well-defined
APIs. This makes Subversion extremely maintainable and usable by other applications and languages.

Subversion's Architecture

Figure 1.1, “Subversion's Architecture” illustrates what one might call a “mile-high” view of Subver-
sion'sdesign.

Figure 1.1. Subversion's Architecture

Introduction

commandling
cllent app

G client apps

Working Copy
Managameant
Library

&

‘;"’
i

#

Ye Olde Internat

Ciiant
intetace

Client Library

v

Reposiory Access

DAy

Local

{Ary TCRAP Matwork)

Apache

mod_dav

||m-:ll2| dav S".I'I'I||

svWnaana

e —
Berkeley DB

Aepository
Intertace

Subvaersion Repository

R ——
FSFS

diagram by Brian 'W. Fitzpatrick =filz& red -bean.cam=

On one end is a Subversion repository that holds all of your versioned data. On the other end is your
ch manages loca reflections of portions of that versioned data (called
“working copies’). Between these extremes are multiple routes through various Repository Access (RA)
across computer networks and through network servers which then ac-

Subversion client program, whi

layers. Some of these routes go

cess the repository. Others bypass the network altogether and access the repository directly.

Installing Subversion

Subversion is built on a portabi

of its network server programs,

lity layer called APR—the Apache Portable Runtime library. The APR
library provides all the interfaces that Subversion needs to function on different operating systems: disk
access, hetwork access, memory management, and so on. While Subversion is able to use Apache as one
its dependence on APR does not mean that Apache is a required com-

4

Introduction

ponent. APR is a standalone library useable by any application. It does mean, however, that like Apache,
Subversion clients and servers run on any operating system that the Apache httpd server runs on: Win-
dows, Linux, al flavors of BSD, Mac OS X, Netware, and others.

The easiest way to get Subversion is to download a binary package built for your operating system. Sub-
version's website (http://subversion.tigris.org) often has these packages available for download, posted
by volunteers. The site usually contains graphical installer packages for users of Microsoft operating
systems. If you run a Unix-like operating system, you can use your system's native package distribution
system (RPMs, DEBS, the portstree, etc.) to get Subversion.

Alternately, you can build Subversion directly from source code. From the Subversion website, down-
load the latest source-code release. After unpacking it, follow the instructions in the | NSTALL file to
build it. Note that a released source package contains everything you need to build a command-line cli-
ent capable of talking to a remote repository (in particular, the apr, apr-util, and neon libraries). But op-
tional portions of Subversion have many other dependencies, such as Berkeley DB and possibly Apache
httpd. If you want to do a complete build, make sure you have all of the packages documented in the
| NSTALL file. If you plan to work on Subversion itself, you can use your client program to grab the
latest, bleeding-edge source code. Thisis documented in the section called “ Get the Source Code”.

Subversion's Components

Subversion, once installed, has a number of different pieces. The following is a quick overview of what
you get. Don't be alarmed if the brief descriptions leave you scratching your head—there are plenty
more pages in this book devoted to alleviating that confusion.

svn
The command-line client program.

svnversion
A program for reporting the state (in terms of revisions of the items present) of aworking copy.

svnlook
A tool for inspecting a Subversion repository.

svhadmin
A tool for creating, tweaking or repairing a Subversion repository.

svndumpfilter
A program for filtering Subversion repository dump streams.

mod_dav_svn

A plug-in module for the Apache HTTP Server, used to make your repository available to others over a net-
work.

svnserve
A custom standalone server program, runnable as a daemon process or invokable by SSH; another way to make
your repository available to others over a network.

Assuming you have Subversion installed correctly, you should be ready to start. The next two chapters
will walk you through the use of svn, Subversion's command-line client program.

A Quick Start

Some people have trouble absorbing a new technology by reading the sort of “top down” approach
provided by this book. This section is a very short introduction to Subversion, and is designed to give
“bottom up” learners a fighting chance. If you prefer to learn by experimentation, the following demon-

5

http://subversion.tigris.org

Introduction

stration will get you up and running. Along the way, we give links to the relevant chapters of this book.

If you're new to the entire concept of version control or to the “copy-modify-merge” model used by both
CV S and Subversion, then you should read Chapter 2, Basic Concepts before going any further.

2 Note

/ The following example assumes that you have svn, the Subversion command-line client,
and svnadmin, the administrative tool, ready to go. It also assumes you are using Subver-
sion 1.2 or later (run svn --version to check.)

Subversion stores all versioned datain a central repository. To begin, create a new repository:

$ svnadm n create /path/to/repos
$ |Is /path/tol/ repos
conf/ dav/ db/ format hooks/ |ocks/ README. txt

This command creates a new directory / pat h/ t o/ r epos which contains a Subversion repository.
This new directory contains (among other things) a collection of database files. Y ou won't see your ver-
sioned files if you peek inside. For more information about repository creation and maintenance, see
Chapter 5, Repository Administration.

Subversion has no concept of a “project”. The repository is just a virtual versioned filesystem, a large
tree that can hold anything you wish. Some administrators prefer to store only one project in a reposit-
ory, and others prefer to store multiple projects in a repository by placing them into separate directories.
The merits of each approach are discussed in the section called “ Choosing a Repository Layout”. Either
way, the repository only manages files and directories, so it's up to humans to interpret particular direct-
ories as “projects’. So while you might see references to projects throughout this book, keep in mind
that we're only ever talking about some directory (or collection of directories) in the repository.

In this example, we assume that you already have some sort of project (a collection of files and director-
ies) that you wish to import into your newly created Subversion repository. Begin by organizing them
into a single directory called mypr oj ect (or whatever you wish). For reasons that will be clear later
(see Chapter 4, Branching and Merging), your project’s tree structure should contain three top-level dir-
ectories named br anches, t ags, and t r unk. Thet r unk directory should contain al of your data,
whilebr anches andt ags directories are empty:

[t mp/ nyproj ect/ branches/

/tmp/ nyproj ect/tags/

[t mp/ nyproj ect/trunk/
foo.c
bar.c
Makefile

The branches, t ags, and t r unk subdirectories aren't actually required by Subversion. They're
merely a popular convention that you'll most likely want to use later on.

Once you have your tree of dataready to go, import it into the repository with the svn import command
(see the section called “svn import”):

$ svn inmport /tnp/nyproject file:///path/to/repos/nyproject -m"initial inport"
Addi ng /tmp/ nyproj ect/ branches
Addi ng /tmp/ nyproj ect/tags

Introduction

Addi ng [t p/ nyproj ect/trunk

Addi ng /tmp/ nyproj ect/trunk/foo.c
Addi ng /tmp/ nyproject/trunk/bar.c
Addi ng /tmp/ nyproj ect/trunk/ Makefile

ébrrm'tted revision 1.
$

Now the repository contains this tree of data. As mentioned earlier, you won't see your files by directly
peeking into the repository; they're all stored within a database. But the repository's imaginary filesys-
tem now contains atop-level directory named mypr oj ect , which in turn contains your data.

Note that the original / t np/ mypr oj ect directory is unchanged; Subversion is unaware of it. (In fact,
you can even delete that directory if you wish.) In order to start manipulating repository data, you need

to create a new “working copy” of the data, a sort of private workspace. Ask Subversion to “check out”
aworking copy of the mypr oj ect / t r unk directory in the repository:

$ svn checkout file:///path/to/repos/ myproject/trunk myproject
A nyproject/foo.c

A nyproject/bar.c

A nyproject/Mkefile

éﬁecked out revision 1.

Now you have a persona copy of part of the repository in a new directory named mypr oj ect . You
can edit the files in your working copy and then commit those changes back into the repository.

» Enter your working copy and edit afile's contents.

* Run svn diff to see unified diff output of your changes.

* Run svn commit to commit the new version of your file to the repository.

* Run svn update to bring your working copy “up-to-date” with the repository.

For afull tour of all the things you can do with your working copy, read Chapter 3, Guided Tour.

At this point, you have the option of making your repository available to others over a network. See
Chapter 6, Server Configuration to learn about the different sorts of server processes available and how
to configure them.

Chapter 2. Basic Concepts

This chapter is a short, casual introduction to Subversion. If you're new to version control, this chapter is
definitely for you. We begin with a discussion of genera version control concepts, work our way into
the specific ideas behind Subversion, and show some simple examples of Subversion in use.

Even though the examples in this chapter show people sharing collections of program source code, keep
in mind that Subversion can manage any sort of file collection—it's not limited to helping computer pro-
grammers.

The Repository

Subversion is a centralized system for sharing information. At its core is a repository, which is a central
store of data. The repository stores information in the form of a filesystem tree—a typical hierarchy of
files and directories. Any number of clients connect to the repository, and then read or write to these
files. By writing data, a client makes the information available to others; by reading data, the client re-
ceivesinformation from others. Figure 2.1, “A typical client/server system” illustrates this.

Figure 2.1. A typical client/server system
Repaository

ﬁﬁﬁ

Client Client

So why is thisinteresting? So far, this sounds like the definition of atypical file server. And indeed, the
repository is a kind of file server, but it's not your usua breed. What makes the Subversion repository
special isthat it remembers every change ever written to it: every change to every file, and even changes
to the directory treeitself, such asthe addition, deletion, and rearrangement of files and directories.

When a client reads data from the repository, it normally sees only the latest version of the filesystem
tree. But the client also has the ability to view previous states of the filesystem. For example, aclient can
ask historical questions like, “What did this directory contain last Wednesday?’ or “Who was the last
person to change this file, and what changes did he make?’ These are the sorts of questions that are at
the heart of any version control system: systems that are designed to record and track changes to data
over time.

Versioning Models

The core mission of a version control system is to enable collaborative editing and sharing of data. But
different systems use different strategies to achieve this.

Basic Concepts

The Problem of File-Sharing

All version control systems have to solve the same fundamental problem: how will the system allow
users to share information, but prevent them from accidentally stepping on each other's feet? It's all too
easy for users to accidentally overwrite each other's changes in the repository.

Consider the scenario shown in Figure 2.2, “The problem to avoid”. Suppose we have two co-workers,
Harry and Sally. They each decide to edit the same repository file at the same time. If Harry saves his
changes to the repository first, then it's possible that (a few moments later) Sally could accidentally
overwrite them with her own new version of the file. While Harry's version of the file won't be lost
forever (because the system remembers every change), any changes Harry made won't be present in
Sally's newer version of the file, because she never saw Harry's changes to begin with. Harry's work is
till effectively lost—or at least missing from the latest version of the file—and probably by accident.
Thisis definitely a situation we want to avoid!

Figure 2.2. The problem to avoid

Iwo wsers read the same file They both begin fo edit their copies
Repository Repository
A A

I_ Read Read —1

L Il

4] 4]

Harry Sally Harry Sally
Harry pubiishes his version first Sally accidentally averwrites Harry's version
Repository

Sally Harry

The Lock-Modify-Unlock Solution

Many version control systems use a lock-modify-unlock model to address the problem of many authors
clobbering each other's work. In this model, the repository allows only one person to change afile at a
time. This exclusivity policy is managed using locks. Harry must “lock” afile before he can begin mak-
ing changes to it. If Harry has locked afile, then Sally cannot also lock it, and therefore cannot make
any changes to that file. All she can do is read the file, and wait for Harry to finish his changes and re-

9

Basic Concepts

lease his lock. After Harry unlocks the file, Sally can take her turn by locking and editing the file. Fig-

ure 2.3, “The lock-modify-unlock solution” demonstrates this simple solution.

Figure 2.3. Thelock-modify-unlock solution

Harey “lacks” file A, then copies While Harry edits, Sally's lack
it for editing attempt faits
Repository Repository

A il

Lok |
I pend Lok
)

Harry Sally Harry Sally
Harry writes his version, then Now Seally can Jock, read, and
releases his lock edit the lntest version
Repository Repository

. :%l
5

Harry Sally Harry Sally

The problem with the lock-modify-unlock model is that it's a bit restrictive, and often becomes a roadb-
lock for users:

Locking may cause administrative problems. Sometimes Harry will lock afile and then forget about
it. Meanwhile, because Sally is still waiting to edit the file, her hands are tied. And then Harry goes
on vacation. Now Sally has to get an administrator to release Harry's lock. The situation ends up
causing alot of unnecessary delay and wasted time.

Locking may cause unnecessary serialization. What if Harry is editing the beginning of a text file,
and Sally simply wants to edit the end of the same file? These changes don't overlap at all. They
could easily edit the file simultaneously, and no great harm would come, assuming the changes were
properly merged together. There's no need for them to take turnsin this situation.

Locking may create a false sense of security. Pretend that Harry locks and edits file A, while Sally
simultaneously locks and edits file B. But suppose that A and B depend on one another, and the
changes made to each are semantically incompatible. Suddenly A and B don't work together any-

10

Basic Concepts

more. The locking system was powerless to prevent the problem—yet it somehow provided a false
sense of security. It's easy for Harry and Sally to imagine that by locking files, each is beginning a
safe, insulated task, and thus not bother discussing their incompatible changes early on.

The Copy-Modify-Merge Solution

Subversion, CVS, and other version control systems use a copy-modify-merge model as an aternative to
locking. In this model, each user's client contacts the project repository and creates a persona working
copy—a local reflection of the repository's files and directories. Users then work in parallel, modifying
their private copies. Finally, the private copies are merged together into a new, final version. The version
control system often assists with the merging, but ultimately a human being is responsible for making it
happen correctly.

Here's an example. Say that Harry and Sally each create working copies of the same project, copied
from the repository. They work concurrently, and make changes to the same file A within their copies.
Sally saves her changes to the repository first. When Harry attempts to save his changes later, the repos-
itory informs him that hisfile A is out-of-date. In other words, that file A in the repository has somehow
changed since he last copied it. So Harry asks his client to merge any new changes from the repository
into his working copy of file A. Chances are that Sally's changes don't overlap with his own; so once he
has both sets of changes integrated, he saves his working copy back to the repository. Figure 2.4, “The
copy-modify-merge solution” and Figure 2.5, “The copy-modify-merge solution (continued)” show this
process.

Figure 2.4. The copy-modify-merge solution

Two users copy the same file They both begin fo edit their copies
Repository Repository
= =
A A

I—Emd—J Lﬁmd

.
2] 2] ¥]

Harry Sally Harry Sally
Sally publishes her version firs! Harry gets an “pul-of-date " error
Repasitory Repository
N

P

H

L Write Write
0 X

[b [b
A A’ A A
Harry Sally Harry Sally

11

Basic Concepts

Figure 2.5. The copy-modify-mer ge solution (continued)

Harry compares the latest version A mew merged version is created
T his oum
Repository Repository
ﬁ
Beod
[[[
%
Harry Sally Harry Sally
The merged version is published Now both wsers have each
athers changes
Repository Repository
[

- WIJ'I’E—I Read

Sally Harry Sally

But what if Sally's changes do overlap with Harry's changes? What then? This situation is called a con-
flict, and it's usually not much of a problem. When Harry asks his client to merge the latest repository
changes into his working copy, his copy of file A is somehow flagged as being in a state of conflict: he'll
be able to see both sets of conflicting changes, and manually choose between them. Note that software
can't automatically resolve conflicts; only humans are capable of understanding and making the neces-
sary intelligent choices. Once Harry has manually resolved the overlapping changes—perhaps after a
discussion with Sally—he can safely save the merged file back to the repository.

The copy-modify-merge model may sound a bit chaotic, but in practice, it runs extremely smoothly.
Users can work in parallel, never waiting for one another. When they work on the samefiles, it turns out
that most of their concurrent changes don't overlap at al; conflicts are infrequent. And the amount of
timeit takesto resolve conflictsis far less than the time lost by alocking system.

In the end, it all comes down to one critical factor: user communication. When users communicate
poorly, both syntactic and semantic conflicts increase. No system can force users to communicate per-
fectly, and no system can detect semantic conflicts. So there's no point in being lulled into afalse prom-
ise that alocking system will somehow prevent conflicts; in practice, locking seems to inhibit productiv-
ity more than anything else.

12

Basic Concepts

When L ocking is Necessary

While the lock-modify-unlock model is considered generally harmful to collaboration, there are till times
when locking is appropriate.

The copy-modify-merge model is based on the assumption that files are contextually mergeable: that is, that
the mgjority of the files in the repository are line-based text files (such as program source code). But for files
with binary formats, such as artwork or sound, it's often impossible to merge conflicting changes. In these
situations, it really is necessary to users to take strict turns when changing the file. Without serialized access,
somebody ends up wasting time on changes that are ultimately discarded.

While CVS and Subversion are still primarily copy-modify-merge systems, they both recognize the need to
lock an occasional file and provide mechanisms for this. See the section called “Locking”.

Subversion in Action

It's time to move from the abstract to the concrete. In this section, we'll show real examples of Subver-
sion being used.

Working Copies

You've aready read about working copies, now we'll demonstrate how the Subversion client creates and
uses them.

A Subversion working copy is an ordinary directory tree on your local system, containing a collection of
files. You can edit these files however you wish, and if they're source code files, you can compile your
program from them in the usual way. Y our working copy is your own private work area: Subversion will
never incorporate other people's changes, nor make your own changes available to others, until you ex-
plicitly tell it to do so. Y ou can even have multiple working copies of the same project.

After you've made some changes to the files in your working copy and verified that they work properly,
Subversion provides you with commands to “publish” your changes to the other people working with
you on your project (by writing to the repository). If other people publish their own changes, Subversion
provides you with commands to merge those changes into your working directory (by reading from the

repository).

A working copy aso contains some extra files, created and maintained by Subversion, to help it carry
out these commands. In particular, each directory in your working copy contains a subdirectory named
. svn, aso known as the working copy administrative directory. The files in each administrative direct-
ory help Subversion recognize which files contain unpublished changes, and which files are out-of-date
with respect to others' work.

A typical Subversion repository often holds the files (or source code) for several projects; usualy, each
project is a subdirectory in the repository's filesystem tree. In this arrangement, a user's working copy
will usually correspond to a particular subtree of the repository.

For example, suppose you have a repository that contains two software projects, pai nt and cal c.

Each project lives in its own top-level subdirectory, as shown in Figure 2.6, “The repository's filesys-
tem”.

Figure 2.6. Therepository'sfilesystem

13

Basic Concepts

k |

calc |

—* Makefile

p

integer.c

L

L L

button.c

—-| paint |

Makefile

fanvas.C

/Lol

- brush.c

To get aworking copy, you must check out some subtree of the repository. (The term “check out” may
sound like it has something to do with locking or reserving resources, but it doesn't; it simply creates a
private copy of the project for you.) For example, if you check out / cal c, you will get aworking copy
likethis:

$ svn checkout http://svn.exanpl e.comrepos/calc
A cal c/ Makefile

A calc/integer.c

A cal c/button.c

Checked out revision 56.

$1s -Acalc
Makefile integer.c button.c .svn/

The list of letter A's indicates that Subversion is adding a number of items to your working copy. You
now have a persona copy of the repository's /cal ¢ directory, with one additiona
entry—. svn—which holds the extrainformation needed by Subversion, as mentioned earlier.

Repository URL s

Subversion repositories can be accessed through many different methods—on local disk, or through various
network protocols. A repository location, however, is aways a URL. Table 2.1, “Repository Access URLS’
describes how different URL schemas map to the available access methods.

14

Basic Concepts

Table2.1. Repository Access URL s

Schema Access M ethod

file://l] direct repository access (on local disk)

http:// access via WebDAV protocol to Subversion-aware
Apache server

https:// sameashtt p: //, but with SSL encryption.

svn:// access via custom protocol to an svnser ve server

svn+ssh:// sameassvn: / / , but through an SSH tunnel.

For more information on how Subversion parses URLSs, see the section called “ Subversion Repository URLS'.

Suppose you make changesto but t on. c. Since the . svn directory remembers the file's modification
date and original contents, Subversion can tell that you've changed the file. However, Subversion does
not make your changes public until you explicitly tell it to. The act of publishing your changes is more
commonly known as committing (or checking in) changes to the repository.

To publish your changes to others, you can use Subversion's commit command:

$ svn commit button.c
Sendi ng button.c
Transmitting file data .
Committed revision 57.

Now your changes to but t on. ¢ have been committed to the repository; if another user checks out a
working copy of / cal c, they will see your changesin the latest version of thefile.

Suppose you have a collaborator, Sally, who checked out a working copy of / cal ¢ at the same time
you did. When you commit your change to but t on. ¢, Sally'sworking copy is left unchanged; Subver-
sion only modifies working copies at the user's request.

To bring her project up to date, Sally can ask Subversion to update her working copy, by using the Sub-
version update command. Thiswill incorporate your changes into her working copy, as well as any oth-
ers that have been committed since she checked it out.

$ pwd
/hone/sal ly/cal ¢

$1s -A
.svn/ Makefile integer.c button.c

$ svn update
U button.c
Updated to revision 57.

The output from the svn update command indicates that Subversion updated the contents of but -
t on. c. Note that Sally didn't need to specify which files to update; Subversion uses the information in
the . svn directory, and further information in the repository, to decide which files need to be brought
up to date.

15

Basic Concepts

Revisions

An svn commit operation can publish changes to any number of files and directories as a single atomic
transaction. In your working copy, you can change files contents, create, delete, rename and copy files
and directories, and then commit the complete set of changes as a unit.

In the repository, each commit is treated as an atomic transaction: either all the commit's changes take
place, or none of them take place. Subversion tries to retain this atomicity in the face of program
crashes, system crashes, network problems, and other users' actions.

Each time the repository accepts a commit, this creates a new state of the filesystem tree, called arevi-
sion. Each revision is assigned a unique natural number, one greater than the number of the previous re-
vision. The initia revision of afreshly created repository is numbered zero, and consists of nothing but
an empty root directory.

Figure 2.7, “The repository” illustrates a nice way to visualize the repository. Imagine an array of revi-

sion numbers, starting at 0, stretching from left to right. Each revision number has a filesystem tree
hanging below it, and each treeis a*“ snapshot” of the way the repository looked after a commit.

i
;

Figure 2.7. Therepository

0 1 2

im [

Global Revision Numbers

Unlike those of many other version control systems, Subversion's revision numbers apply to entire trees, not
individual files. Each revision number selects an entire tree, a particular state of the repository after some
committed change. Another way to think about it is that revision N represents the state of the repository
filesystem after the Nth commit. When Subversion users talk about “revision 5 of f 00. c¢”, they really mean
“f 00. c asit appearsin revision 5.” Notice that in general, revisions N and M of afile do not necessarily dif-
fer! Because CV'S uses per-file revision numbers, CV'S users might want to see Appendix A, Subversion for
CVSUsersfor more details.

16

Basic Concepts

It's important to note that working copies do not always correspond to any single revision in the reposit-
ory; they may contain files from several different revisions. For example, suppose you check out a work-
ing copy from arepository whose most recent revision is 4:

cal c/ Makefile: 4
integer.c:4
button.c: 4

At the moment, this working directory corresponds exactly to revision 4 in the repository. However,
suppose you make a change to but t on. ¢, and commit that change. Assuming no other commits have
taken place, your commit will create revision 5 of the repository, and your working copy will now look
likethis:

cal c/ Makefile: 4
i nteger.c: 4
button.c:5

Suppose that, at this point, Sally commits a changeto i nt eger . c, creating revision 6. If you use svn
update to bring your working copy up to date, then it will look like this:

cal c/ Makefile: 6
integer.c:6
button.c: 6

Sally's change to i nt eger . ¢ will appear in your working copy, and your change will still be present
in but t on. c. In this example, the text of Makefi | e isidentical in revisions 4, 5, and 6, but Subver-
sion will mark your working copy of Makef i | e with revision 6 to indicate that it is still current. So,
after you do a clean update at the top of your working copy, it will generally correspond to exactly one
revision in the repository.

How Working Copies Track the Repository

For each file in a working directory, Subversion records two essential pieces of information in the
. svn/ administrative area:

» what revision your working fileis based on (thisis called the file's working revision), and

» atimestamp recording when the local copy was last updated by the repository.

Given this information, by talking to the repository, Subversion can tell which of the following four
statesaworking fileisin:

Unchanged, and current
The file is unchanged in the working directory, and no changes to that file have been committed to the reposit-
ory since its working revision. An svn commit of the file will do nothing, and an svn update of the file will do
nothing.

Locally changed, and current
The file has been changed in the working directory, and no changes to that file have been committed to the re-
pository since its base revision. There are local changes that have not been committed to the repository, thus an
svn commit of the file will succeed in publishing your changes, and an svn update of the file will do nothing.

17

Basic Concepts

Unchanged, and out-of-date
The file has not been changed in the working directory, but it has been changed in the repository. The file
should eventually be updated, to make it current with the public revision. An svn commit of the file will do
nothing, and an svn update of the file will fold the latest changes into your working copy.

Locally changed, and out-of-date
The file has been changed both in the working directory, and in the repository. An svn commit of the file will
fail with an “out-of-date” error. The file should be updated first; an svn update command will attempt to merge
the public changes with the local changes. If Subversion can't complete the merge in a plausible way automatic-
ally, it leavesit to the user to resolve the conflict.

This may sound like a lot to keep track of, but the svn status command will show you the state of any
item in your working copy. For more information on that command, see the section called “svn status’.

Mixed Revision Working Copies

Asagenera principle, Subversion tries to be as flexible as possible. One specia kind of flexibility isthe
ability to have a working copy containing files and directories with a mix of different working revision
numbers. Unfortunately, this flexibility tends to confuse a number of new users. If the earlier example
showing mixed revisions perplexed you, here's a primer on both why the feature exists and how to make
use of it.

Updates and Commits are Separate

One of the fundamental rules of Subversion isthat a*“push” action does not cause a*“pull”, nor the other
way around. Just because you're ready to submit new changes to the repository doesn't mean you're
ready to receive changes from other people. And if you have new changes still in progress, then svn up-
date should gracefully merge repository changes into your own, rather than forcing you to publish them.

The main side-effect of this rule is that it means a working copy has to do extra bookkeeping to track
mixed revisions, and be tolerant of the mixture as well. It's made more complicated by the fact that dir-
ectories themselves are versioned.

For example, suppose you have aworking copy entirely at revision 10. You edit thefilef 0oo. ht M and
then perform an svn commit, which creates revision 15 in the repository. After the commit succeeds,
many new users would expect the working copy to be entirely at revision 15, but that's not the case! Any
number of changes might have happened in the repository between revisions 10 and 15. The client
knows nothing of those changes in the repository, since you haven't yet run svn update, and svn com-
mit doesn't pull down new changes. If, on the other hand, svn commit were to automatically download
the newest changes, then it would be possible to set the entire working copy to revision 15—but then
we'd be breaking the fundamental rule of “push” and “pull” remaining separate actions. Therefore the
only safe thing the Subversion client can do is mark the one file—f 00. ht ml —as being at revision 15.
The rest of the working copy remains at revision 10. Only by running svn update can the latest changes
be downloaded, and the whole working copy be marked as revision 15.

Mixed revisions are normal

Thefact is, every time you run svn commit, your working copy ends up with some mixture of revisions.
The things you just committed are marked as having larger working revisions than everything else. After
several commits (with no updates in-between) your working copy will contain a whole mixture of revi-
sions. Even if you're the only person using the repository, you will still see this phenomenon. To exam-
ine your mixture of working revisions, use the svn status --verbose command (see the section called
“svn status’ for moreinformation.)

Often, new users are completely unaware that their working copy contains mixed revisions. This can be
confusing, because many client commands are sensitive to the working revision of the item they're ex-

18

Basic Concepts

amining. For example, the svn log command is used to display the history of changes to afile or direct-
ory (see the section called “svn log”). When the user invokes this command on a working copy object,
they expect to see the entire history of the object. But if the object's working revision is quite old (often
because svn update hasn't been run in along time), then the history of the older version of the object is
shown.

Mixed revisions are useful

If your project is sufficiently complex, you'll discover that it's sometimes nice to forcibly “backdate’
portions of your working copy to an earlier revision; you'll learn how to do that in Chapter 3. Perhaps
you'd like to test an earlier version of a sub-module contained in a subdirectory, or perhaps you'd like to
figure out when a bug first came into existence in a specific file. Thisis the “time machine” aspect of a
version control system — the feature which allows you to move any portion of your working copy for-
ward and backward in history.

Mixed revisions have limitations
However you make use of mixed revisionsin your working copy, there are limitations to this flexibility.

First, you cannot commit the deletion of afile or directory which isn't fully up-to-date. If a newer ver-
sion of the item existsin the repository, your attempt to delete will be rejected, to prevent you from acci-
dentally destroying changes you've not yet seen.

Second, you cannot commit a metadata change to a directory unless it's fully up-to-date. You'll learn
about attaching “properties’ to items in Chapter 6. A directory's working revision defines a specific set
of entries and properties, and thus committing a property change to an out-of-date directory may destroy
properties you've not yet seen.

Summary

We've covered a number of fundamental Subversion conceptsin this chapter:
» Weveintroduced the notions of the central repository, the client working copy, and the array of re-
pository revision trees.

* We've seen some simple examples of how two collaborators can use Subversion to publish and re-
ceive changes from one another, using the “copy-modify-merge” model.

» Wevetaked ahit about the way Subversion tracks and manages information in aworking copy.
At this point, you should have a good idea of how Subversion works in the most general sense. Armed

with this knowledge, you should now be ready to jump into the next chapter, which is a detailed tour of
Subversion's commands and features.

19

Chapter 3. Guided Tour

Now we will go into the details of using Subversion. By the time you reach the end of this chapter, you
will be able to perform almost all the tasks you need to use Subversion in a normal day's work. You'll
start with an initial checkout of your code, and walk through making changes and examining those
changes. You'll also see how to bring changes made by others into your working copy, examine them,
and work through any conflicts that might arise.

Note that this chapter is not meant to be an exhaustive list of all Subversion's commands—rather, it's a
conversational introduction to the most common Subversion tasks you'll encounter. This chapter as-
sumes that you've read and understood Chapter 2, Basic Concepts and are familiar with the general mod-
el of Subversion. For a complete reference of all commands, see Chapter 9, Subversion Complete Refer-
ence.

Help!

Before reading on, here is the most important command you'll ever need when using Subversion: svn
help. The Subversion command-line client is self-documenting—at any time, a quick svn help
<subcommand> will describe the syntax, switches, and behavior of the subcommand.

Import

You use svn import to import a new project into a Subversion repository. While this is most likely the
very first thing you will do when you set up your Subversion server, it's not something that happens very
often. For a detailed description of import, see the section called “svn import” later in this chapter.

Revisions: Numbers, Keywords, and Dates, Oh

My!

Before we go on, you should know a bit about how to identify a particular revision in your repository.
Asyou learned in the section called “Revisions’, arevision is a“snapshot” of the repository at a particu-
lar moment in time. As you continue to commit and grow your repository, you need a mechanism for
identifying these snapshots.

You specify these revisions by using the - - r evi si on (- r) switch plus the revision you want (svn -
-revision REV) or you can specify a range by separating two revisions with a colon (svn --revision
REV1:REV?2). And Subversion lets you refer to these revisions by number, keyword, or date.

Revision Numbers

When you create a hew Subversion repository, it begins its life at revision zero and each successive
commit increases the revision number by one. After your commit completes, the Subversion client in-
forms you of the new revision number:

$ svn commit --nmessage "Corrected number of cheese slices.”
Sendi ng sandwi ch. t xt

Transmtting file data .

Conmitted revision 3.

If at any point in the future you want to refer to that revision (we'll see how and why we might want to

20

Guided Tour

do that later in this chapter), you can refer to it as“3".

Revision Keywords

The Subversion client understands a number of revision keywords. These keywords can be used instead
of integer arguments to the - - r evi si on switch, and are resolved into specific revision numbers by
Subversion:

Note

Q/ Each directory in your working copy contains an administrative subdirectory called . svn.
For every file in a directory, Subversion keeps a copy of each file in the administrative
area. This copy is an unmodified (ho keyword expansion, no end-of-line translation, no
nothing) copy of the file as it existed in the last revision (called the “BASE” revision) that
you updated it to in your working copy. We refer to this file as the pristine copy or text-
base version of your file, and it's aways an exact byte-for-byte copy of the file as it exists
in the repository.

HEAD
The latest (or “youngest”) revision in the repository.

BASE
The revision number of an item in a working copy. If the item has been locally modified, the “BASE version”
refersto the way the item appears without those local modifications.

COMMITTED
The most recent revision prior to, or equal to, BASE, in which an item changed.

PREV
Therevision immediately before the last revision in which an item changed. (Technically, COVM TTED- 1.)

i Note
/ PREV, BASE, and COMM TTED can be used to refer to local paths, but not to URLSs.

Here are some examples of revision keywords in action. Don't worry if the commands don't make sense
yet; we'll be explaining these commands as we go through the chapter:

svn diff --revision PREV: COWM TTED f o0o0. c
shows the |last change comitted to foo.c

svn |l og --revision HEAD
shows | og nessage for the latest repository commt

svn di ff --revision HEAD
conpares your working file (with local changes) to the |latest version
in the repository

svn di ff --revision BASE: HEAD foo.c
conpares your “pristine” foo.c (no |local changes) with the
| atest version in the repository

svn log --revision BASE: HEAD
shows all commit |ogs since you | ast updated

e HIHH HHL HHE B

21

Guided Tour

$ svn update --revision PREV foo.c
rewi nds the | ast change on foo.c
(foo.c's working revision is decreased)

These keywords allow you to perform many common (and helpful) operations without having to look up
specific revision numbers or remember the exact revision of your working copy.

Revision Dates

Anywhere that you specify a revision number or revision keyword, you can also specify a date inside
curly braces “{}”. You can even access a range of changes in the repository using both dates and revi-
sionstogether!

Here are examples of the date formats that Subversion accepts. Remember to use quotes around any date
that contains spaces.

svn checkout --revision {2002-02-17}

svn checkout --revision {15: 30}

svn checkout --revision {15:30:00.200000}

svn checkout --revision {"2002-02-17 15: 30"}

svn checkout --revision {"2002-02-17 15:30 +0230"}
svn checkout --revision {2002-02-17T15: 30}

svn checkout --revision {2002-02-17T15: 30Z}

svn checkout --revision {2002-02-17T15: 30-04: 00}
svn checkout --revision {20020217T1530}

svn checkout --revision {20020217T1530Z7}

svn checkout --revision {20020217T1530- 0500}

When you specify a date as a revision, Subversion finds the most recent revision of the repository as of
that date:

$ svn log --revision {2002-11-28}

ri2 | ira | 2002-11-27 12:31:51 -0600 (Wed, 27 Nov 2002) | 6 lines

Is Subversion a Day Early?

If you specify a single date as a revision without specifying a time of day (for example 2002- 11- 27), you
may think that Subversion should give you the last revision that took place on the 27th of November. Instead,
you'll get back arevision from the 26th, or even earlier. Remember that Subversion will find the most recent
revision of the repository as of the date you give. If you give a date without a timestamp, like 2002- 11- 27,
Subversion assumes a time of 00:00:00, so looking for the most recent revision won't return anything on the
day of the 27th.

If you want to include the 27th in your search, you can either specify the 27th with the time
({"2002-11-27 23:59"}), orjust specify the next day ({ 2002- 11- 28}).

Y ou can also use arange of dates. Subversion will find all revisions between both dates, inclusive:

22

Guided Tour

$ svn log --revision {2002-11-20}:{2002-11- 29}

Aswe pointed out, you can also mix dates and revisions:
$ svn log --revision {2002-11-20}: 4040

Users should be aware of a subtlety that can become quite a stumbling-block when dealing with dates in
Subversion. Since the timestamp of a revision is stored as a property of the revision—an unversioned,
modifiable property—revision timestamps can be changed to represent complete falsifications of true
chronology, or even removed atogether. This will wreak havoc on the internal date-to-revision conver-
sion that Subversion performs.

Initial Checkout

Most of the time, you will start using a Subversion repository by doing a checkout of your project.
Checking out a repository creates a copy of it on your local machine. This copy contains the HEAD
(latest revision) of the Subversion repository that you specify on the command line:

$ svn checkout http://svn.collab.net/repos/svn/trunk
A trunk/subversion. dsw

A trunk/svn_check. dsp

A trunk/ COW TTERS

A trunk/configure.in

A trunk/| DEAS

éﬁecked out revision 2499.

What'sin a Name?

Subversion tries hard not to limit the type of data you can place under version control. The contents of files
and property values are stored and transmitted as binary data, and the section called “svn: ni me-t ype”
tells you how to give Subversion a hint that “textual” operations don't make sense for a particular file. There
are afew places, however, where Subversion places restrictions on information it stores.

Subversion internally handles certain bits of data—for example, property names, path names, and log mes-
sages—as UTF-8 encoded Unicode. Thisis not to say that al your interactions with Subversion must involve
UTF-8, though. As a general rule, Subversion clients will gracefully and transparently handle conversions
between UTF-8 and the encoding system in use on your computer, if such a conversion can meaningfully be
done (which isthe case for most common encodings in use today).

In addition, path names are used as XML attribute values in WebDAV exchanges, as well in as some of Sub-
version's housekeeping files. This means that path names can only contain legal XML (1.0) characters. Sub-
version also prohibits TAB, CR, and LF characters in path names, so they aren't broken up in diffs, or in the
output of commands like svn log or svn status.

While it may seem like a lot to remember, in practice these limitations are rarely a problem. As long as your
locale settings are compatible with UTF-8, and you don't use control characters in path names, you should
have no trouble communicating with Subversion. The command-line client adds an extra bit of help—it will
automatically escape legal path characters as needed in URLSs you type to create “legally correct” versions for
internal use.

Experienced users of Subversion have also developed a set of best-practice conventions for laying out pathsin

23

Guided Tour

the repository. While these aren't strict requirements like the syntax described above, they help to organize
frequently performed tasks. The/ t r unk part of URLs you'll find throughout this book is one of these con-
ventions; we'll talk alot more about it and related recommendations in Chapter 4, Branching and Merging.

Although the above example checks out the trunk directory, you can just as easily check out any deep
subdirectory of arepository by specifying the subdirectory in the checkout URL :

$ svn checkout http://svn.collab. net/repos/svn/trunk/doc/book/tools
A tools/readne-dblite. htnl
A tool s/fo-styl esheet. xsl
A tool s/svnbook. el

A tools/dtd

A tools/dtd/dblite.dtd

éﬁecked out revision 2499.

Since Subversion uses a “copy-modify-merge” model instead of “lock-modify-unlock” (see Chapter 2,
Basic Concepts), you're already able to start making changes to the files and directories in your working
copy. Your working copy is just like any other collection of files and directories on your system. You
can edit and change them, move them around, you can even delete the entire working copy and forget
about it.

Note

Q/ While your working copy is “just like any other collection of files and directories on your
system”, you need to let Subversion know if you're going to be rearranging anything inside
of your working copy. If you want to copy or move an item in aworking copy, you should
use svn copy or svn move instead of the copy and move commands provided by your op-
erating system. We'll talk more about them later in this chapter.

Unless you're ready to commit anew file or directory, or changes to existing ones, there's no need to fur-
ther notify the Subversion server that you've done anything.

What'swith the. svn directory?

Every directory in aworking copy contains an administrative area, a subdirectory named . svn. Usually, dir-
ectory listing commands won't show this subdirectory, but it is nevertheless an important directory. Whatever
you do, don't delete or change anything in the administrative areal Subversion depends on it to manage your
working copy.

While you can certainly check out a working copy with the URL of the repository as the only argument,
you can also specify a directory after your repository URL. This places your working copy in the new
directory that you name. For example:

$ svn checkout http://svn.collab. net/repos/svn/trunk subv
A subv/subversion. dsw

A subv/svn_check. dsp

A subv/ COW TTERS

A subv/configure.in

A subv/ | DEAS

éﬁecked out revision 2499.

24

Guided Tour

That will place your working copy in a directory named subv instead of a directory named t r unk as
we did previously.

Basic Work Cycle

Subversion has numerous features, options, bells and whistles, but on a day-to-day basis, odds are that
you will only use a few of them. In this section well run through the most common things that you
might find yourself doing with Subversion in the course of a day's work.

The typical work cycle looks like this:

» Update your working copy
e svnupdate

» Make changes

* svnadd

* svndelete
e svn copy
e svn move

» Examine your changes
* svn status
* svndiff
s svnrevert
» Maerge others' changes into your working copy
e svnupdate
* svnresolved
» Commit your changes

e svn commit

Update Your Working Copy

When working on a project with ateam, you'll want to update your working copy to receive any changes
made since your last update by other developers on the project. Use svn update to bring your working
copy into sync with the latest revision in the repository.

$ svn update

U foo.c

U bar.c

Updated to revision 2.

25

Guided Tour

In this case, someone else checked in modifications to both f 00. ¢ and bar . ¢ since the last time you
updated, and Subversion has updated your working copy to include those changes.

Let's examine the output of svn update a bit more. When the server sends changes to your working
copy, a letter code is displayed next to each item to let you know what actions Subversion performed to
bring your working copy up-to-date:

U foo
Filef oo was Updated (received changes from the server).

A foo
File or directory f oo was Added to your working copy.

D foo
File or directory f oo was Deleted from your working copy.

R foo
File or directory f oo was Replaced in your working copy; that is, f 00 was deleted, and a new item with the
same name was added. While they may have the same name, the repository considers them to be distinct objects
with distinct histories.

G foo
File f oo received new changes from the repository, but your local copy of the file had your modifications.
Either the changes did not intersect, or the changes were exactly the same as your local modifications, so Sub-
version has successfully merGed the repository's changes into the file without a problem.

C foo
File f oo received Conflicting changes from the server. The changes from the server directly overlap your own
changes to the file. No need to panic, though. This overlap needs to be resolved by a human (you); we discuss
this situation later in this chapter.

Make Changes to Your Working Copy

Now you can get to work and make changes in your working copy. It's usually most convenient to de-
cide on a particular change (or set of changes) to make, such as writing a new feature, fixing a bug, etc.
The Subversion commands that you will use here are svn add, svn delete, svn copy, and svn move.
However, if you are merely editing files that are already in Subversion, you may not need to use any of
these commands until you commit. Changes you can make to your working copy:

File changes
Thisisthe simplest sort of change. Y ou don't need to tell Subversion that you intend to change a file; just make
your changes. Subversion will be able to automatically detect which files have been changed.

Tree changes
You can ask Subversion to “mark” files and directories for scheduled removal, addition, copying, or moving.
While these changes may take place immediately in your working copy, no additions or removals will happen in
the repository until you commit them.

To make file changes, use your text editor, word processor, graphics program, or whatever tool you
would normally use. Subversion handles binary files just as easily as it handles text files—and just as ef-
ficiently too.

26

Guided Tour

Here is an overview of the four Subversion subcommands that you'll use most often to make tree
changes (we'll cover svn import and svn mkdir later).

° Warning
While you can edit your files with whatever tool you like, you shouldn't change the struc-
ture of your working copy without letting Subversion know what you're doing. Use the svn
copy, svn delete, and svn move commands to change the structure of your working copy,
and use the svn add command to place new files and directories under version control.

svn add foo
Schedule file, directory, or symbolic link f 0o to be added to the repository. When you next commit, f oo will
become a child of its parent directory. Note that if f 00 isadirectory, everything underneath f oo will be sched-
uled for addition. If you only want to add f oo itself, passthe - - non- r ecur si ve (- N) switch.

svn delete foo
Schedule file, directory, or symbolic link f 0o to be deleted from the repository. If f oo isafileor link, itisim-
mediately deleted from your working copy. If f oo is a directory, it is not deleted, but Subversion schedules it
for deletion. When you commit your changes, f oo will be removed from your working copy and the repository.
1

svn copy foo bar
Create anew item bar asaduplicate of f 00. bar isautomatically scheduled for addition. When bar is added
to the repository on the next commit, its copy history is recorded (as having originally come from f 00). svn
copy does not create intermediate directories.

svh move foo bar
This command is exactly the same as running svn copy foo bar; svn delete foo. That is, bar is scheduled for
addition as a copy of f 00, and f 00 is scheduled for removal. svn move does not create intermediate director-
ies.

Changing the Repository Without a Working Copy

Earlier in this chapter, we said that you have to commit any changes that you make in order for the repository
to reflect these changes. That's not entirely true—there are some use cases that immediately commit tree
changes to the repository. This only happens when a subcommand is operating directly on a URL, rather than
on a working-copy path. In particular, specific uses of svn mkdir, svn copy, svn move, and svn delete can
work with URLs.

URL operations behave in this manner because commands that operate on a working copy can use the work-
ing copy as a sort of “staging area’ to set up your changes before committing them to the repository. Com-
mands that operate on URLs don't have this luxury, so when you operate directly on a URL, any of the above
actions represent an immediate commit.

Examine Your Changes

Once you've finished making changes, you need to commit them to the repository, but before you do so,
it's usually a good idea to take a look at exactly what you've changed. By examining your changes be-
fore you commit, you can make a more accurate log message. Y ou may also discover that you've inad-
vertently changed a file, and this gives you a chance to revert those changes before committing. Addi-

Yof course, nothi ng is ever totally deleted from the repository—just from the HEAD of the repository. You can get back anything you delete by
checking out (or updating your working copy) arevision earlier than the one in which you deleted it.

27

Guided Tour

tionally, thisis a good opportunity to review and scrutinize changes before publishing them. Y ou can see
exactly what changes you've made by using svn status, svn diff, and svn revert. You will usualy use
the first two commands to find out what files have changed in your working copy, and then perhaps the
third to revert some (or all) of those changes.

Subversion has been optimized to help you with this task, and is able to do many things without commu-
nicating with the repository. In particular, your working copy contains a secret cached “ pristing” copy of
each version controlled file within the . svn area. Because of this, Subversion can quickly show you
how your working files have changed, or even alow you to undo your changes without contacting the
repository.

svn status

You'l probably use the svn status command more than any other Subversion command.

CVSUsers: Hold That Update!

Y ou're probably used to using cvs update to see what changes you've made to your working copy. svn status
will give you all the information you need regarding what has changed in your working copy—without ac-
cessing the repository or potentially incorporating new changes published by other users.

In Subversion, update does just that—it updates your working copy with any changes committed to the re-
pository since the last time you've updated your working copy. Y ou'll have to break the habit of using the up-
date command to see what local modifications you've made.

If you run svn status at the top of your working copy with no arguments, it will detect all file and tree
changes you've made. Below are examples of the different status codes that svn status can return. (Note
that the text following # is not actually printed by svn status.)

L sone_dir # svn left a lock in the .svn area of sone_dir
M bar. c # the content in bar.c has l|ocal nodifications
M baz. c # baz.c has property but no content nodifications
X 3rd_party # dir is part of an externals definition
? foo.o # svn doesn't manage fo0o0.0
! some_dir # svn manages this, but it's nissing or inconplete
~ qux # versioned as file/dir/link, but type has changed
I .screenrc # svn doesn't manage this, and is set to ignore it
A + noved _dir # added with history of where it canme from
M + noved_di r/ READVE # added with history and has | ocal nodifications
D stuff/fish.c # file is schedul ed for del etion
A stuff/loot/bloo.h # file is scheduled for addition
C stuff/loot/lunp.c # file has textual conflicts from an update
C stuff/loot/glub.c # file has property conflicts froman update
R Xyz.c # file is schedul ed for repl acenent
S stuff/squawk # file or dir has been switched to a branch
K dog.j pg # file is |l ocked locally; |ock-token present
O cat.jpg # file is locked in the repository by other user
B bird.|pg # file is locked locally, but |Iock has been broken
T fish.jpg # file is locked locally, but |ock has been stolen

In this output format svn status prints five columns of characters, followed by several whitespace char-
acters, followed by afile or directory name. The first column tells the status of afile or directory and/or
its contents. The codes printed here are:

28

Guided Tour

Aitem
Thefile, directory, or symbolic link i t emhas been scheduled for addition into the repository.

Citem
Thefilei t emisin astate of conflict. That is, changes received from the server during an update overlap with
local changes that you have in your working copy. You must resolve this conflict before committing your
changes to the repository.

Ditem
Thefile, directory, or symbolic link i t emhas been scheduled for deletion from the repository.

Mitem
The contents of thefilei t emhave been modified.

Ritem
The file, directory, or symbolic link i t emhas been scheduled to replace i t emin the repository. This means
that the object isfirst deleted, then another object of the same nameis added, all within asingle revision.

X item
The directory i t emis unversioned, but is related to a Subversion externals definition. To find out more about
externals definitions, see the section called “ Externals Definitions’.

? item
The file, directory, or symbolic link i t emis not under version control. You can silence the question marks by
either passing the - - qui et (- q) switch to svn status, or by setting the svn: i gnor e property on the parent
directory. For more information on ignored files, see the section called “svn: i gnore”.

I item
Thefile, directory, or symbolic link i t emis under version control but is missing or somehow incomplete. The
item can be missing if it's removed using a non-Subversion command. In the case of a directory, it can be in-
complete if you happened to interrupt a checkout or update. A quick svn update will refetch the file or direct-
ory from the repository, or svn revert file will restore amissing file.

~item
The file, directory, or symbolic link i t emisin the repository as one kind of object, but what's actually in your
working copy is some other kind. For example, Subversion might have afile in the repository, but you removed
the file and created a directory in its place, without using the svn delete or svn add command.

| item
The file, directory, or symbolic link i t emis not under version control, and Subversion is configured to ignore
it during svn add, svn import and svn status operations. For more information on ignored files, see the section
caled “svn: i gnor e”. Note that this symbol only shows up if you pass the - - no- i gnor e option to svn
status—otherwise the file would be ignored and not listed at all!

The second column tells the status of a file or directory's properties (see the section called “Properties’
for more information on properties). If an Mappears in the second column, then the properties have been
modified, otherwise awhitespace will be printed.

The third column will only show whitespace or an L which means that Subversion has locked the direct-
ory's. svn working area. You will see an L if you run svn statusin adirectory where an svn commit is
in progress—perhaps when you are editing the log message. If Subversion is not running, then presum-
ably Subversion was interrupted and the lock needs to be cleaned up by running svn cleanup (more
about that |ater in this chapter).

The fourth column will only show whitespace or a + which means that the file or directory is scheduled
to be added or modified with additional attached history. This typically happens when you svn move or
svn copy afileor directory. If yousee A +, this means the item is scheduled for addition-with-history.

29

Guided Tour

It could be afile, or the root of a copied directory. + means the item is part of a subtree scheduled for
addition-with-history, i.e. some parent got copied, and it's just coming along for theride. M+ means
the item is part of a subtree scheduled for addition-with-history, and it has local modifications. When
you commit, first the parent will be added-with-history (copied), which means this file will automatic-
ally exist in the copy. Then the local modifications will be uploaded into the copy.

The fifth column will only show whitespace or an S. This signifies that the file or directory has been
switched from the path of the rest of the working copy (using svn switch) to a branch.

The sixth column shows information about locks, which is further explained in the section called
“Locking”. (These are not the same locks as the ones indicated by an L in the third column; see Three
meanings of “lock”.)

If you pass a specific path to svn status, it gives you information about that item alone:

$ svn status stuff/fish.c
D stuff/fish.c

svn status also has a - - ver bose (- v) switch, which will show you the status of every item in your
working copy, even if it has not been changed:

$ svn status --verbose

M 44 23 sally READVE
44 30 sally | NSTALL
M 44 20 harry bar. c
44 18 ira stuff
44 35 harry stuff/trout.c
D 44 19 ira stuff/fish.c
44 21 sally stuff/things
0 ? ? stuff/things/bloo.h
44 36 harry stuf f/things/gloo.c

Thisisthe “long form” output of svn status. The first column remains the same, but the second column
shows the working-revision of the item. The third and fourth columns show the revision in which the
item last changed, and who changed it.

None of the above invocationsto svn status contact the repository, they work only locally by comparing
the metadata in the . svn directory with the working copy. Finaly, thereisthe - - show updat es (-
u) switch, which contacts the repository and adds information about things that are out-of-date:

$ svn status --show updates --verbose
M * 44 23 sal ly READVE
M 44 20 harry bar. c
* 44 35 harry stuff/trout.c
D 44 19 ira stuff/fish.c
A 0 ? ? stuf f/things/bloo.h
St at us agai nst revi sion: 46

Notice the two asterisks: if you were to run svn update at this point, you would receive changes to
README and t r out . c. Thistells you some very useful information—you'll need to update and get the
server changes on README before you commit, or the repository will reject your commit for being out-
of-date. (More on this subject later.)

svn diff

30

Guided Tour

Another way to examine your changes is with the svn diff command. You can find out exactly how
you've modéfied things by running svn diff with no arguments, which prints out file changes in unified
diff format:

$ svn diff
| ndex: bar.c

--- bar.c (revision 3)
+++ bar.c (working copy)
@_117 +1l 12 @

+#i ncl ude <sys/types. h>
+#i ncl ude <sys/stat. h>
+#i ncl ude <uni std. h>

+

+#i ncl ude <stdi o. h>

int main(void) {

- printf("Sixty-four slices of Anerican Cheese...\n");
+ printf("Sixty-five slices of Anerican Cheese...\n");
return O;

--- README (revision 3)

+++ README (wor ki ng copy)
@»-193,3 +193,4 @@

+Note to self: pick up laundry.

| ndex: stuff/fish.c

--- stuff/fish.c (revision 1)

+++ stuff/fish.c (working copy)

-Wel come to the file known as 'fish'.
-Information on fish will be here soon.

I ndex: stuff/things/bloo.h

--- stuff/things/bloo.h (revision 8)
+++ stuff/things/bloo.h (working copy)
+Here is a new file to describe

+t hi ngs about bl oo.

The svn diff command produces this output by comparing your working files against the cached
“pristine” copies within the. svn area. Files scheduled for addition are displayed as all added-text, and
files scheduled for deletion are displayed as all deleted text.

Output is displayed in unified diff format. That is, removed lines are prefaced with a- and added lines
are prefaced with a +. svn diff aso prints filename and offset information useful to the patch program,
SO you can generate “patches’ by redirecting the diff output to afile:

$ svn diff > patchfile

Y ou could, for example, email the patch file to another developer for review or testing prior to commit.

2subversion uses its internal diff engine, which produces unified diff format, by default. If you want diff output in a different format, specify an
external diff program using - - di f f - cnd and pass any flags you'd like to it using the - - ext ensi ons switch. For example, to see local differ-
encesin filef 00. ¢ in context output format while ignoring whitespace changes, you might run svn diff --diff-cmd /usr/bin/diff --extensions '-
bc' foo.c.

31

Guided Tour

svn revert

Now suppose you see the above diff output, and realize that your changes to README are a mistake;
perhaps you accidentally typed that text into the wrong file in your editor.

Thisis aperfect opportunity to use svn revert.

$ svn revert README
Reverted ' READVE'

Subversion reverts the file to its pre-modified state by overwriting it with the cached “pristing” copy
from the . svn area. But also note that svn revert can undo any scheduled operations—for example,
you might decide that you don't want to add a new file after all:

$ svn status foo
? f oo

$ svn add foo
A foo

$ svn revert foo
Reverted ' foo'

$ svn status foo
f oo

2
: Note
/ svn revert | TEM has exactly the same effect as deleting | TEMfrom your working copy
and then running svn update -r BASE | TEM However, if you're reverting afile, svn re-
vert has one very noticeable difference—it doesn't have to communicate with the reposit-
ory to restore your file.

Or perhaps you mistakenly removed afile from version control:
$ svn status READMVE

README

$ svn del et e README
D READIVE

$ svn revert README
Reverted ' READVE

$ svn status READVE
READNVE

L ook Ma! No Network!

All three of these commands (svn status, svn diff, and svn revert) can be used without any network access.
This makes it easy to manage your changes-in-progress when you are somewhere without a network connec-
tion, such astravelling on an airplane, riding a commuter train or hacking on the beach.

32

Guided Tour

Subversion does this by keeping private caches of pristine versions of each versioned file inside of the . svn
administrative areas. This allows Subversion to report—and revert—Iocal modifications to those files without
network access. This cache (called the “text-base”) also alows Subversion to send the user's local modifica
tions during a commit to the server as a compressed delta (or “difference”) against the pristine version. Hav-
ing this cache is a tremendous benefit—even if you have afast net connection, it's much faster to send only a
file's changes rather than the whole file to the server. At first glance, this might not seem that important, but
imagine the repercussions if you try to commit a one line change to a 400MB file and have to send the whole
file to the server!

Resolve Conflicts (Merging Others' Changes)

We've already seen how svn status -u can predict conflicts. Suppose you run svn update and some in-
teresting things occur:

$ svn update

U | NSTALL
G README
C bar.c

Updated to revision 46.

The U and G codes are no cause for concern; those files cleanly absorbed changes from the repository.
The files marked with U contained no local changes but were Updated with changes from the repository.
The G stands for merGed, which means that the file had local changes to begin with, but the changes
coming from the repository didn't overlap with the local changes.

But the C stands for conflict. This means that the changes from the server overlapped with your own,
and now you have to manually choose between them.

Whenever a conflict occurs, three things typically occur to assist you in noticing and resolving that con-
flict:

» Subversion prints a C during the update, and remembers that the fileisin a state of conflict.

» If Subversion considers the file to be of a mergeable type, it places conflict markers—special strings
of text which delimit the “sides” of the conflict—into the file to visibly demonstrate the overlapping
areas. (Subversion uses the svn: m me- t ype property to decide if afile is capable of contextual,
line-based merging. Seethe section called “svn: m ne-t ype” tolearn more.)

» For every conflicted file, Subversion places up to three extra unversioned filesin your working copy:

filenane. m ne
This is your file as it existed in your working copy before you updated your working copy—that is, without
conflict markers. This file has your latest changes in it and nothing else. (If Subversion considers the file to be
unmergesble, then the. ni ne fileisn't created, since it would be identical to the working file.)

filenanme. r OLDREV
This is the file that was the BASE revision before you updated your working copy. That is, the file that you
checked out before you made your latest edits.

fil ename. r NEVREV
Thisis the file that your Subversion client just received from the server when you updated your working copy.
Thisfile corresponds to the HEAD revision of the repository.

33

Guided Tour

Here OLDREV is the revision number of the filein your . svn directory and NEWREV is the revision
number of the repository HEAD.

For example, Sally makes changes to the file sandwi ch. t xt in the repository. Harry has just changed
the file in his working copy and checked it in. Sally updates her working copy before checking in and
she gets a conflict:

$ svn update

C sandw ch. t xt
Updated to revision 2.
$1s -1

sandwi ch. t xt

sandwi ch. t xt. m ne
sandwi ch.txt.r1l

sandwi ch. txt.r2

At this point, Subversion will not allow you to commit the file sandwi ch. t xt until the three tempor-
ary files are removed.

$ svn commit --nessage "Add a few nore things"
svn: Conmit failed (details follow):
svn: Aborting comrt: '/homel/sally/svn-work/sandw ch.txt' remains in conflict

If you get a conflict, you need to do one of three things:

» Maergethe conflicted text “by hand” (by examining and editing the conflict markers within thefile).
» Copy one of the temporary files on top of your working file.
* Runsvnrevert <filename> to throw away al of your local changes.

Once you've resolved the conflict, you need to let Subversion know by running svn resolved. This re-
moves the three temporary files and Subversion no longer considers the file to be in a state of conflict.3

$ svn resol ved sandwi ch. t xt
Resol ved conflicted state of 'sandw ch.txt'

Merging Conflicts by Hand

Merging conflicts by hand can be quite intimidating the first time you attempt it, but with a little prac-
tice, it can become as easy asfalling off a bike.

Here's an example. Due to a miscommunication, you and Sally, your collaborator, both edit the file
sandwi ch. t xt at the same time. Sally commits her changes, and when you go to update your work-
ing copy, you get a conflict and we're going to have to edit sandwi ch. t xt to resolve the conflicts.
First, let'stake alook at the file:

3You can always remove the temporary files yourself, but would you really want to do that when Subversion can do it for you? We didn't think
S0.

34

Guided Tour

$ cat sandw ch. t xt
Top piece of bread
Mayonnai se

Lettuce

Tomat o

Provol one
<LK . M he

Sal am

Mort adel | a
Prosciutto

Sauer kr aut

Gilled Chicken
>S>>>>>> 12

Creole Miustard

Bott om pi ece of bread

The strings of less-than signs, equal signs, and greater-than signs are conflict markers, and are not part
of the actual data in conflict. You generally want to ensure that those are removed from the file before
your next commit. The text between the first two sets of markers is composed of the changes you made
in the conflicting area:

<<<<<<< . m ne
Sal am

Mort adel | a
Prosciutto

Sauer kr aut
Gilled Chicken
>S>>>>>> 12

Usually you won't want to just delete the conflict markers and Sally's changes—she's going to be aw-
fully surprised when the sandwich arrives and it's not what she wanted. So this is where you pick up the
phone or walk across the office and explain to Sally that you can't get sauerkraut from an Italian deli
Once you've agreed on the changes you will check in, edit your file and remove the conflict markers.

Top piece of bread
Mayonnai se

Lettuce

Tomat o

Pr ovol one

Sal ami

Mort adel | a

Prosciutto

Creole Mustard

Bott om pi ece of bread

Now run svn resolved, and you're ready to commit your changes:

4And if you ask them for it, they may very well ride you out of town on arail.

35

Guided Tour

$ svn resol ved sandwi ch. t xt
$ svn commit -m " Go ahead and use ny sandwi ch, discarding Sally's edits.

Remember, if you ever get confused while editing the conflicted file, you can always consult the three
files that Subversion creates for you in your working copy—including your file as it was before you up-
dated. Y ou can even use a third-party interactive merging tool to examine those three files.

Copying a File Onto Your Working File

If you get a conflict and decide that you want to throw out your changes, you can merely copy one of the
temporary files created by Subversion over the file in your working copy:

$ svn update

C sandwi ch. t xt

Updated to revision 2.

$ |s sandwi ch. *

sandwi ch.txt sandwich.txt.mne sandwich.txt.r2 sandwich.txt.rl
$ cp sandwi ch. txt.r2 sandwi ch. t xt

$ svn resol ved sandwi ch. t xt

Punting: Using svn revert

If you get a conflict, and upon examination decide that you want to throw out your changes and start
your edits again, just revert your changes:

$ svn revert sandwi ch. txt
Reverted ' sandw ch. t xt'

$ |I's sandwi ch. *

sandw ch. t xt

Note that when you revert a conflicted file, you don't have to run svn resolved.

Now you're ready to check in your changes. Note that svn resolved, unlike most of the other commands
we've dealt with in this chapter, requires an argument. In any case, you want to be careful and only run
svn resolved when you're certain that you've fixed the conflict in your file—once the temporary files are
removed, Subversion will let you commit the file even if it still contains conflict markers.

Commit Your Changes

Finally! Y our edits are finished, you've merged all changes from the server, and you're ready to commit
your changes to the repository.

The svn commit command sends all of your changes to the repository. When you commit a change, you
need to supply alog message, describing your change. Y our log message will be attached to the new re-
vision you create. If your log messageis brief, you may wish to supply it on the command line using the
- - message (or - n) option;

$ svn conmit --message "Corrected nunber of cheese slices."
Sendi ng sandwi ch. t xt

Transmitting file data .

Committed revision 3.

36

Guided Tour

However, if you've been composing your log message as you work, you may want to tell Subversion to
get the message from afile by passing the filename with the- - f i | e switch:

$ svn commit --file | ognsg
Sendi ng sandwi ch. t xt
Transmtting file data .
Committed revision 4.

If you fail to specify either the - - nessage or - -fi | e switch, then Subversion will automatically
launch your favorite editor (seethe edi t or - cmd section in the section called “ Config”) for composing

alog message.

o .

_/I If you're in your editor writing a commit message and decide that you want to cancel your
commit, you can just quit your editor without saving changes. If you've aready saved your
commit message, simply delete the text and save again.

$ svn commit
Waiting for Enacs...Done

Log nmessage unchanged or not specified
a)bort, c)ontinue, e)dit

a

$

The repository doesn't know or care if your changes make any sense as a whole; it only checks to make
sure that nobody else has changed any of the same files that you did when you weren't looking. If some-
body has done that, the entire commit will fail with a message informing you that one or more of your
filesis out-of-date:

$ svn conmit --message "Add another rule"

Sendi ng rul es.txt

svn: Commit failed (details follow:

svn: Qut of date: 'rules.txt' in transaction 'g'

At this point, you need to run svn update, deal with any merges or conflicts that result, and attempt your
commit again.

That covers the basic work cycle for using Subversion. There are many other features in Subversion that
you can use to manage your repository and working copy, but you can get by quite easily using only the
commands that we've discussed so far in this chapter.

Examining History

As we mentioned earlier, the repository is like a time machine. It keeps a record of every change ever
committed, and allows you to explore this history by examining previous versions of files and director-
ies as well as the metadata that accompanies them. With a single Subversion command, you can check
out the repository (or restore an existing working copy) exactly asit was at any date or revision number
in the past. However, sometimes you just want to peer into the past instead of going into the past.

There are several commands that can provide you with historical datafrom the repository:

37

Guided Tour

svn log
Shows you broad information: log messages with date and author information attached to revisions, and which
paths changed in each revision.

svn diff
Shows you the specific details of how afile changed over time.

svn cat
Thisisused to retrieve any file asit existed in a particular revision number and display it on your screen.

svn list
Displaysthefilesin adirectory for any given revision.

svn log

To find information about the history of a file or directory, use the svn log command. svn log will
provide you with a record of who made changes to afile or directory, at what revision it changed, the
time and date of that revision, and, if it was provided, the log message that accompanied the commit.

$ svn log

r3 | sally | Mon, 15 Jul 2002 18:03:46 -0500 | 1 line

Added include |lines and corrected # of cheese slices.

r2 | harry | Mn, 15 Jul 2002 17:47:57 -0500 | 1 line
Added main() nethods.

rl| sally | Mn, 15 Jul 2002 17:40:08 -0500 | 1 line
Initial inport

Note that the log messages are printed in reverse chronological order by default. If you wish to see a
different range of revisions in a particular order, or just a single revision, passthe - - r evi si on (- r)

switch:

$ svn log --revision 5:19 # shows logs 5 through 19 in chronol ogi cal order
$ svn log -r 19:5 # shows logs 5 through 19 in reverse order

$ svn log -r 8 # shows | og for revision 8

Y ou can also examine the log history of asingle file or directory. For example:

$ svn log foo.c

$ svn log http://foo.com svn/trunk/code/foo.c

These will display log messages only for those revisions in which the working file (or URL) changed.

38

Guided Tour

If you want even more information about a file or directory, svn log also takes a - - ver bose (- v)
switch. Because Subversion allows you to move and copy files and directories, it isimportant to be able
to track path changes in the filesystem, so in verbose mode, svn log will include alist of changed paths
inarevision in its output:

| sally | 2002-07-14 08:15:29 -0500 | 1 line
Changed pat hs:
M /trunk/ code/ f oo. c
M /trunk/ code/ bar. h
A /trunk/ code/ doc/ READVE

svn log also takes a - - qui et (- q) switch, which suppresses the body of the log message. When com-
bined with - - ver bose, it gives just the names of the changed files.

Why Does svn log Give Me an Empty Response?

After working with Subversion for a bit, most users will come across something like this:

$ svn log -r 2

At first glance, this seems like an error. But recall that while revisions are repository-wide, svn log operates
on apath in the repository. If you supply no path, Subversion uses the current working directory as the default
target. As aresult, if you're operating in a subdirectory of your working copy and attempt to see the log of a
revision in which neither that directory nor any of its children was changed, Subversion will show you an
empty log. If you want to see what changed in that revision, try pointing svn log directly at the top-most URL
of your repository, asin svn log -r 2 http://svn.collab.net/r epos/svn.

svn diff

We've already seen svn diff before—it displays file differences in unified diff format; it was used to
show the local modifications made to our working copy before committing to the repository.

In fact, it turns out that there are three distinct uses of svn diff:

e Examinelocal changes
» Compare your working copy to the repository

e Compare repository to repository

Examining Local Changes

As we've seen, invoking svn diff with no switches will compare your working files to the cached

39

Guided Tour

“pristine” copiesinthe. svn area:

$ svn diff
| ndex: rul es.txt

--- rules.txt (revision 3)
+++ rul es.txt (working copy)
@a-1,4 +1,5 @@

Be kind to others

Freedom = Responsibility

Everyt hing i n noderation
-Chew with your nouth open
+Chew wi th your nouth cl osed
;Li sten when others are speaking

Comparing Working Copy to Repository

If asingle--revision (-r) number is passed, then your working copy is compared to the specified
revision in the repository.

$ svn diff --revision 3 rules.txt
| ndex: rul es. txt

--- rules.txt (revision 3)
+++ rul es.txt (working copy)
@a-1,4 +1,5 @@

Be kind to others

Freedom = Responsibility

Everyt hing i n noderation
-Chew with your nouth open
+Chew wi th your nouth cl osed
;Li sten when others are speaking

Comparing Repository to Repository

If two revision numbers, separated by a colon, are passed via - - r evi si on (- r), then the two revi-
sions are directly compared.

$ svn diff --revision 2:3 rules. txt
| ndex: rul es.txt

--- rules.txt (revision 2)
+++ rul es.txt (revision 3)
@a@a-1,4 +1,4 @@
Be kind to others
- Freedom = Chocol ate | ce Cream
+Freedom = Responsibility
Everyt hing i n noderation
$Chewwith your nouth open

Not only can you use svn diff to compare files in your working copy to the repository, but if you supply
a URL argument, you can examine the differences between items in the repository without even having
aworking copy. Thisis especially useful if you wish to inspect changes in a file when you don't have a
working copy on your local machine:

40

Guided Tour

$ svn diff --revision 4:5 http://svn.red-bean. confrepos/exanpl e/trunk/text/rules.t

svn cat

If you want to examine an earlier version of afile and not necessarily the differences between two files,
you can use svn cat:

$ svn cat --revision 2 rules.txt
Be kind to others

Freedom = Chocol ate | ce Cream
Everyt hing i n noderation

Chew with your nouth open

Y ou can aso redirect the output directly into afile:

$ svn cat --revision 2 rules.txt > rules.txt.v2

Y ou're probably wondering why we don't just use svn update --revision to update the file to the older
revision. There are afew reasons why we might prefer to use svn cat.

First, you may want to see the differences between two revisions of afile using an external diff program
(perhaps a graphical one, or perhaps your file isin such a format that the output of unified diff is non-
sensical). In this case, you'll need to grab a copy of the old revision, redirect it to afile, and pass both
that and the file in your working copy to your external diff program.

Sometimesit's easier to look at an older version of afilein its entirety as opposed to just the differences
between it and another revision.

svn list

The svn list command shows you what files are in a repository directory without actually downloading
the files to your local machine:

$ svn list http://svn.collab.net/repos/svn
READIVE

branches/

clients/

t ags/

t runk/

If you want amore detailed listing, passthe - - ver bose (- v) flag to get output like this:

$ svn list --verbose http://svn.collab.net/repos/svn

2755 harry 1331 Jul 28 02: 07 README
2773 sally Jul 29 15:07 branches/
2769 sally Jul 29 12:07 clients/
2698 harry Jul 24 18:07 tags/

41

Guided Tour

2785 sally Jul 29 19: 07 trunk/

The columns tell you the revision at which the file or directory was last modified, the user who modified
it, thesizeif itisafile, the date it was last modified, and the item's name.

A Final Word on History

In addition to all of the above commands, you can use svn update and svn checkout with the -
-revi si on switch to take an entire working copy “back in time’ 5

$ svn checkout --revision 1729 # Checks out a new working copy at ri1729

élsvn update --revision 1729 # Updates an existing working copy to ri1729

Other Useful Commands

While not as frequently used as the commands previously discussed in this chapter, you will occasion-
ally need these commands.

svn cleanup

When Subversion modifies your working copy (or any information within . svn), it tries to do so as
safely as possible. Before changing the working copy, Subversion writes its intentionsto alog file. Next
it executes the commands in the log file to apply the requested change, holding a lock on the relevant
part of the working copy while it works — to prevent othe Subversion clients from accessing the work-
ing copy in mid-change. Finally, Subversion removes the log file. Architecturally, this is similar to a
journaled filesystem. If a Subversion operation is interrupted (if the process is killed, or if the machine
crashes, for example), the log files remain on disk. By re-executing the log files, Subversion can com-
plete the previously started operation, and your working copy can get itself back into a consistent state.

And thisis exactly what svn cleanup does: it searches your working copy and runs any |eftover logs, re-
moving working copy locks in the process. If Subversion ever tells you that some part of your working
copy is “locked”, then this is the command that you should run. Also, svn status will display an L next
to locked items:

$ svn status
L somedi r
M somedir/foo.c

$ svn cl eanup
$ svn status
M sonedir/foo.c

Don't confuse these working copy locks with the ordinary locks that Subversion users create when using
the “lock-modify-unlock” model of concurrent version control; see Three meanings of “lock” for clari-
fication.

5See? We told you that Subversion was a time machine.

42

Guided Tour

svn import

The svn import command is a quick way to copy an unversioned tree of filesinto a repository, creating
intermediate directories as necessary.

$ svnadmi n create /usr/local/svn/ new epos
$ svn inmport nytree file:///usr/local/svn/new epos/sone/project \
-m"Initial inport"

Addi ng nytreel/ foo.c
Addi ng mytreel/ bar.c
Addi ng nyt ree/ subdir
Addi ng nmyt r ee/ subdi r/ quux. h

Committed revision 1.

The previous example copied the contents of directory myt r ee under the directory sone/ pr oj ect in
the repository:

$ svn list file:///usr/local/svn/ new epos/sone/ project
bar. c

foo.c

subdir/

Note that after the import is finished, the original tree is not converted into a working copy. To start
working, you still need to svn checkout afresh working copy of the tree.

Summary

Now we've covered most of the Subversion client commands. Notable exceptions are those dealing with
branching and merging (see Chapter 4, Branching and Merging) and properties (see the section called
“Properties’). However, you may want to take a moment to skim through Chapter 9, Subversion Com-
plete Reference to get an idea of all the many different commands that Subversion has—and how you
can use them to make your work easier.

43

Chapter 4. Branching and Merging

Branching, tagging, and merging are concepts common to aimost al version control systems. If you're
not familiar with these ideas, we provide a good introduction in this chapter. If you are familiar, then
hopefully you'll find it interesting to see how Subversion implements these ideas.

Branching is a fundamental part of version control. If you're going to alow Subversion to manage your
data, then thisis afeature you'll eventually come to depend on. This chapter assumes that you're already
familiar with Subversion's basic concepts (Chapter 2, Basic Concepts).

What's a Branch?

Suppose it's your job to maintain a document for a division in your company, a handbook of some sort.
One day a different division asks you for the same handbook, but with a few parts “tweaked” for them,
since they do things dightly differently.

What do you do in this situation? Y ou do the obvious thing: you make a second copy of your document,
and begin maintaining the two copies separately. As each department asks you to make small changes,
you incorporate them into one copy or the other.

Y ou often want to make the same change to both copies. For example, if you discover atypo in the first
copy, it's very likely that the same typo exists in the second copy. The two documents are almost the
same, after all; they only differ in small, specific ways.

Thisisthe basic concept of a branch—namely, aline of development that exists independently of anoth-
er line, yet still shares a common history if you look far enough back in time. A branch always begins

life as a copy of something, and moves on from there, generating its own history (see Figure 4.1,
“Branches of development”).

Figure 4.1. Branches of development
3rd branch

15t branch

¥

Original line of development

¥

2nd branch

time (1_:}

Subversion has commands to help you maintain parallel branches of your files and directories. It allows
you to create branches by copying your data, and remembers that the copies are related to one another. It
also helps you duplicate changes from one branch to another. Finaly, it can make portions of your
working copy reflect different branches, so that you can “mix and match” different lines of development
in your daily work.

Using Branches

Branching and Merging

At this point, you should understand how each commit creates an entire new filesystem tree (called a
“revision”) in the repository. If not, go back and read about revisionsin the section called “Revisions’.

For this chapter, we'll go back to the same example from Chapter 2. Remember that you and your col-
laborator, Sally, are sharing a repository that contains two projects, pai nt and cal c¢. Notice that in
Figure 4.2, “Starting repository layout”, however, each project directory now contains subdirectories
namedt r unk and br anches. The reason for thiswill soon become clear.

Figure4.2. Starting repository layout

(]

= calc —
—
P —
[b
*=| trunk -
[b
S
*| branches
= paint I —
—
P N
[
= trunk >
[L
P T —

= branches

As before, assume that Sally and you both have working copies of the “calc” project. Specificaly, you
each have aworking copy of / cal ¢/ t r unk. All the files for the project are in this subdirectory rather
than in / cal c itself, because your team has decided that / cal ¢/ t r unk is where the “main line” of
development is going to take place.

Let's say that you've been given the task of performing aradical reorganization of the project. It will take
along time to write, and will affect al the filesin the project. The problem here is that you don't want to
interfere with Sally, who is in the process of fixing small bugs here and there. She's depending on the
fact that the latest version of the project (in/ cal ¢/t r unk) is always usable. If you start committing
your changes bit-by-bit, you'll surely break things for Sally.

One strategy is to crawl into a hole: you and Sally can stop sharing information for a week or two. That
is, start gutting and reorganizing all the files in your working copy, but don't commit or update until
you're completely finished with the task. There are a number of problems with this, though. First, it's not
very safe. Most people like to save their work to the repository frequently, should something bad acci-
dentally happen to their working copy. Second, it's not very flexible. If you do your work on different
computers (perhaps you have a working copy of / cal ¢/t runk on two different machines), you'll
need to manually copy your changes back and forth, or just do all the work on a single computer. By that

45

Branching and Merging

same token, it's difficult to share your changes-in-progress with anyone else. A common software devel-
opment “best practice” isto alow your peers to review your work as you go. If nobody sees your inter-
mediate commits, you lose potential feedback. Finally, when you're finished with all your changes, you
might find it very difficult to re-merge your final work with the rest of the company's main body of
code. Sally (or others) may have made many other changes in the repository that are difficult to incor-
porate into your working copy—especialy if you run svn update after weeks of isolation.

The better solution is to create your own branch, or line of development, in the repository. This allows
you to save your half-broken work frequently without interfering with others, yet you can still select-
ively share information with your collaborators. You'll see exactly how this works later on.

Creating a Branch

Creating a branch is very simple—you make a copy of the project in the repository using the svn copy
command. Subversion is not only able to copy single files, but whole directories as well. In this case,
you want to make a copy of the/ cal ¢/ t r unk directory. Where should the new copy live? Wherever
you wish—it's a matter of project policy. Let's say that your team has a policy of creating branches in
the/ cal ¢/ br anches area of the repository, and you want to name your branch my- cal ¢c- br anch.
You'll want to create a new directory, / cal ¢/ br anches/ ny- cal c- br anch, which beginsits life
asacopy of / cal ¢/t runk.

There are two different ways to make a copy. We'll demonstrate the messy way first, just to make the
concept clear. To begin, check out aworking copy of the project's root directory, / cal c:

$ svn checkout http://svn.exanpl e.con repos/cal c bigw
A bigwe/trunk/

A bigwe/trunk/ Makefile

A bigwe/trunk/integer.c

A bigwe/trunk/button.c

A bi gwe/ branches/

Checked out revision 340.

Making a copy is now simply amatter of passing two working-copy paths to the svn copy command:

$ cd bigwe

$ svn copy trunk branches/ ny-cal c-branch
$ svn status

A + branches/ my- cal c- branch

In this case, the svn copy command recursively copiesthet r unk working directory to a new working
directory, br anches/ ny- cal c- br anch. As you can see from the svn status command, the new
directory is now scheduled for addition to the repository. But also notice the “+” sign next to the letter
A. This indicates that the scheduled addition is a copy of something, not something new. When you
commit your changes, Subversion will create / cal ¢/ br anches/ my- cal c- br anch in the reposit-
ory by copying/ cal c/ t r unk, rather than resending all of the working copy data over the network:

$ svn commit -m"Creating a private branch of /calc/trunk."
Addi ng branches/ ny-cal c- branch
Conmitted revision 341.

And now the easier method of creating a branch, which we should have told you about in the first place:
svn copy is able to operate directly on two URLS.

$ svn copy http://svn.exanpl e.com repos/cal c/trunk \

46

Branching and Merging

http://svn. exanpl e. com repos/ cal c/ branches/ ny-cal c- branch \
-m"Creating a private branch of /calc/trunk."

Committed revision 341.

There's really no difference between these two methods. Both procedures create a new directory in revi-
sion 341, and the new directory is acopy of / cal ¢/t runk. Thisis shown in Figure 4.3, “Repository
with new copy”. Notice that the second method, however, performs an immediate commit. 1 lt's an easi-
er procedure, because it doesn't require you to check out a large mirror of the repository. In fact, this
technique doesn't even require you to have aworking copy at all.

Figure 4.3. Repository with new copy

= alc e
—
P —
m
#| trunk -
me
¢ — —
* branches o
p.l i
my-cale ;. el
:_branch :
S
B
—"" paint . —
—
e
m
= trunk -
mr
- —
* branches

Cheap Copies

Subversion's repository has a special design. When you copy a directory, you don't need to worry about the
repository growing huge—Subversion doesn't actually duplicate any data. Instead, it creates a new directory
entry that points to an existing tree. If you're a Unix user, this is the same concept as a hard-link. From there,
the copy is said to be “lazy”. That is, if you commit a change to one file within the copied directory, then only
that file changes—the rest of the files continue to exist as links to the origina filesin the original directory.

subversion does not support cross-repository copying. When using URLs with svn copy or svn move, you can only copy items within the same
repository.

47

Branching and Merging

Thisis why you'll often hear Subversion users talk about “cheap copies’. It doesn't matter how large the dir-
ectory is—it takes a very tiny, constant amount of time to make a copy of it. In fact, this feature is the basis of
how commits work in Subversion: each revision is a“cheap copy” of the previous revision, with a few items
lazily changed within. (To read more about this, visit Subversion's website and read about the “bubble up”
method in Subversion's design documents.)

Of course, these internal mechanics of copying and sharing data are hidden from the user, who simply sees
copies of trees. The main point here is that copies are cheap, both in time and space. Make branches as often
as you want.

Working with Your Branch

Now that you've created a branch of the project, you can check out a new working copy to start using it:

$ svn checkout http://svn.exanpl e.com repos/cal ¢/ branches/ ny-cal c-branch
A ny-cal c-branch/ Makefile

A ny-cal c-branch/integer.c

A ny-cal c-branch/button.c

Checked out revision 341.

There's nothing specia about this working copy; it simply mirrors a different directory in the repository.

When you commit changes, however, Sally won't ever see them when she updates. Her working copy is

of / cal c/trunk. (Be sure to read the section called “Switching a Working Copy” later in this

chapter: the svn switch command is an alternate way of creating aworking copy of a branch.)

Let's pretend that a week goes by, and the following commits happen:

* You make achangeto/ cal c/ branches/ my- cal c- branch/ but t on. ¢, which creates revi-
sion 342.

* You make achangeto/ cal c/ branches/ ny-cal c- branch/i nt eger. c, which creates re-
vision 343.

» Sally makesachangeto/ cal ¢/ t runk/ i nt eger. c, which creates revision 344.

There are now two independent lines of development, shown in Figure 4.4, “ The branching of one file's
history”, happening oni nt eger . c.

Figure4.4. The branching of onefile's history

48

Branching and Merging

,agﬁw, ﬁﬁqgggl
: 5 s my-calc-branch
integerc ri43
| cregled | (Changed changed ,
98 1303 1341 344

I'J'mleG)

Things get interesting when you look at the history of changes made to your copy of i nt eger . c:

$ pwd
/ hore/ user/ ny- cal c- branch

$ svn log --verbose integer.c

r343 | user | 2002-11-07 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines
Changed pat hs:
M / cal ¢/ branches/ nmy-cal c-branch/i nteger.c

* integer.c: frozzled the wazjub.

r341 | user | 2002-11-03 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines
Changed pat hs:
A /cal c/ branches/ my-cal c-branch (from/cal c/trunk: 340)

Creating a private branch of /cal c/trunk.

r303 | sally | 2002-10-29 21:14:35 -0600 (Tue, 29 Cct 2002) | 2 lines
Changed pat hs:
M /cal c/trunk/integer.c

* integer.c: changed a docstring.

rog8 | sally | 2002-02-22 15:35:29 -0600 (Fri, 22 Feb 2002) | 2 lines
Changed pat hs:
M/ cal c/trunk/integer.c

* integer.c: adding this file to the project.

Notice that Subversion is tracing the history of your branch'si nt eger. c al the way back through
time, even traversing the point where it was copied. It shows the creation of the branch as an event in the
history, because i nt eger . ¢ was implicitly copied when all of / cal ¢/ trunk/ was copied. Now
look what happens when Sally runs the same command on her copy of thefile:

$ pwd
/hone/sal ly/cal ¢

49

Branching and Merging

$ svn log --verbose integer.c

r344 | sally | 2002-11-07 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines
Changed pat hs:
M/ cal c/trunk/integer.c

* integer.c: fix a bunch of spelling errors.

r303 | sally | 2002-10-29 21:14:35 -0600 (Tue, 29 Cct 2002) | 2 lines
Changed pat hs:
M /cal c/trunk/integer.c

* integer.c: changed a docstring.

ro8 | sally | 2002-02-22 15:35:29 -0600 (Fri, 22 Feb 2002) | 2 lines
Changed pat hs:
M /cal c/trunk/integer.c

* integer.c: adding this file to the project.

Sally sees her own revision 344 change, but not the change you made in revision 343. As far as Subver-
sion is concerned, these two commits affected different files in different repository locations. However,
Subversion does show that the two files share a common history. Before the branch-copy was made in
revision 341, they used to be the samefile. That's why you and Sally both see the changes made in revi-
sions 303 and 98.

The Key Concepts Behind Branches

There are two important lessons that you should remember from this section.

1. Unlike many other version control systems, Subversion's branches exist as normal filesystem dir-
ectories in the repository, not in an extra dimension. These directories just happen to carry some
extra historical information.

2. Subversion has no internal concept of a branch—only copies. When you copy a directory, the res-
ulting directory is only a “branch” because you attach that meaning to it. Y ou may think of the dir-
ectory differently, or treat it differently, but to Subversion it's just an ordinary directory that hap-
pens to have been created by copying.

Copying Changes Between Branches

Now you and Sally are working on parallel branches of the project: you're working on a private branch,
and Sally isworking on the trunk, or main line of development.

For projects that have alarge number of contributors, it's common for most people to have working cop-
ies of the trunk. Whenever someone needs to make a long-running change that is likely to disrupt the
trunk, a standard procedure is to create a private branch and commit changes there until al the work is
complete.

So, the good news is that you and Sally aren't interfering with each other. The bad news is that it's very
easy to drift too far apart. Remember that one of the problems with the “crawl in ahole” strategy is that
by the time you're finished with your branch, it may be near-impossible to merge your changes back into

50

Branching and Merging

the trunk without a huge number of conflicts.

Instead, you and Sally might continue to share changes as you work. It's up to you to decide which
changes are worth sharing; Subversion gives you the ability to selectively “copy” changes between
branches. And when you're completely finished with your branch, your entire set of branch changes can
be copied back into the trunk.

Copying Specific Changes

In the previous section, we mentioned that both you and Sally made changesto i nt eger . ¢ on differ-
ent branches. If you look at Sally's log message for revision 344, you can see that she fixed some
spelling errors. No doubt, your copy of the same file still has the same spelling errors. It's likely that
your future changes to this file will be affecting the same areas that have the spelling errors, so you'rein
for some potential conflicts when you merge your branch someday. It's better, then, to receive Sally's
change now, before you start working too heavily in the same places.

It's time to use the svn merge command. This command, it turns out, is a very close cousin to the svn
diff command (which you read about in Chapter 3). Both commands are able to compare any two ob-
jects in the repository and describe the differences. For example, you can ask svn diff to show you the
exact change made by Sally in revision 344:

$ svn diff -r 343:344 http://svn. exanpl e. conl repos/ cal c/trunk

I ndex: integer.c

--- integer.c (revision 343)
+++ integer.c (revision 344)
@-147,7 +147,7 @@
case 6: sprint

case 7: sprint

case 8: sprint

- case 9: sprint
+ case 9: sprint
n

n

i nf o->operating_system "HPFS (OS/2 or NT)"); break;
i nf o->operating_system "Macintosh"); break;

i nf o->operating_system "Z-Systent); break;

i nf o- >operating_system "CPM); break;

i nf o->operating_system "CP/M); break;

i nf o->operating_system "TOPS-20"); break;

i nf o->operating_system "NTFS (Wndows NT)"); break;
i nf o->operating_system "QDOS"); break;

case 10: spri
case 11: spri
case 12: sprin
@ -164,7 +164,7 @@
| ow = (unsigned short) read byte(gzfile); /* read LSB */

NN T e

hi gh = (unsigned short) read_byte(gzfile); /* read MsB */
high = high << 8; [/* interpret MSB correctly */
- total = low + high; /* add themtogethe for correct total */
+ total = low + high; /* add themtogether for correct total */

i nf o->extra_header = (unsigned char *) ny_nalloc(total);
fread(info->extra_header, total, 1, gzfile);

@-241,7 +241,7 @@
Store the offset with ftell() ! */

if ((info->data offset = ftell(ng|le))—— -1) {
- printf("error: ftell() retturned -1.\n");
+ printf("error: ftell() returned -1.\n");
exit(1);
}
@@ -249,7 +249,7 @@
printf("l believe start of conpressed data is %\n", info->data_offset);
#endi f

/* Set postion eight bytes fromthe end of the file. */
+ /* Set position eight bytes fromthe end of the file. */

51

Branching and Merging

if (fseek(gzfile, -8, SEEK END)) {
printf("error: fseek() returned non-zero\n");

The svn merge command is amost exactly the same. Instead of printing the differences to your termin-
al, however, it applies them directly to your working copy as local modifications:

$ svn nmerge -r 343:344 http://svn.exanpl e. com repos/cal c/trunk
U integer.c

$ svn status
M integer.c

The output of svn merge shows that your copy of i nt eger . ¢ was patched. It now contains Sally's
change—the change has been “ copied” from the trunk to your working copy of your private branch, and
now exists as alocal modification. At this point, it's up to you to review the local modification and make
sure it works correctly.

In another scenario, it's possible that things may not have gone so well, and that i nt eger . ¢ may have
entered a conflicted state. Y ou might need to resolve the conflict using standard procedures (see Chapter
3), or if you decide that the merge was a bad idea altogether, simply give up and svn revert the local
change.

But assuming that you've reviewed the merged change, you can svn commit the change as usual. At that
point, the change has been merged into your repository branch. In version control terminology, this act
of copying changes between branches is commonly called porting changes.

When you commit the local modification, make sure your log message mentions that you're porting a
specific change from one branch to another. For example:

$ svn commit -m"integer.c: ported r344 (spelling fixes) fromtrunk."
Sendi ng i nteger.c

Transmtting file data .

Commi tted revision 360.

Asyou'll seein the next sections, thisis avery important “best practice” to follow.

Why Not Use Patches | nstead?

A question may be on your mind, especially if you're a Unix user: why bother to use svn merge at al? Why
not simply use the operating system's patch command to accomplish the same job? For example:

$ svn diff -r 343:344 http://svn.exanpl e.confrepos/cal c/trunk > patchfile
$ patch -p0 < patchfile

Patching file integer.c using Plan A. ..

Hunk #1 succeeded at 147.

Hunk #2 succeeded at 164.

Hunk #3 succeeded at 241.

Hunk #4 succeeded at 249.

done

In this particular case, yes, there really is no difference. But svn merge has special abilities that surpass the
patch program. The file format used by patch is quite limited; it's only able to tweak file contents. There's no
way to represent changes to trees, such as the addition, removal, or renaming of files and directories. If Saly's

52

Branching and Merging

change had, say, added a new directory, the output of svn diff wouldn't have mentioned it at all. svn diff only
outputs the limited patch-format, so there are some ideas it smply can't express. 2 The svn mer ge command,
however, can express changes in tree structure and properties by directly applying them to your working

copy.

A word of warning: while svn diff and svn merge are very similar in concept, they do have different
syntax in many cases. Be sure to read about them in Chapter 9 for details, or ask svn help. For example,
svn mer ge requires a working-copy path as atarget, i.e. a place where it should apply the tree-changes.
If the target isn't specified, it assumes you are trying to perform one of the following common opera-
tions:

1. Youwant to merge directory changesinto your current working directory.

2. You want to merge the changes in a specific file into afile by the same name which exists in your
current working directory.

If you are merging a directory and haven't specified a target path, svn merge assumes the first case
above and tries to apply the changes into your current directory. If you are merging afile, and that file
(or afile by the same name) exists in your current working directory, svn merge assumes the second
case and tries to apply the changesto alocal file with the same name.

If you want changes applied somewhere else, you'll need to say so. For example, if you're sitting in the
parent directory of your working copy, you'll have to specify the target directory to receive the changes:

$ svn merge -r 343:344 http://svn. exanpl e. com repos/cal c/trunk ny-cal c-branch
U ny-calc-branch/integer.c

The Key Concept Behind Merging

Y ou've now seen an example of the svn merge command, and you're about to see several more. If you're
feeling confused about exactly how merging works, you're not alone. Many users (especially those new
to version control) are initially perplexed about the proper syntax of the command, and about how and
when the feature should be used. But fear not, this command is actually much simpler than you think!
There'savery easy technique for understanding exactly how svn mer ge behaves.

The main source of confusion is the name of the command. The term “merge” somehow denotes that
branches are combined together, or that there's some sort of mysterious blending of data going on. That's
not the case. A better name for the command might have been svn diff-and-apply, because that's all that
happens:. two repository trees are compared, and the differences are applied to aworking copy.

The command takes three arguments:

1. Aninitia repository tree (often called the left side of the comparison),
2. A final repository tree (often called the right side of the comparison),
3. A working copy to accept the differences aslocal changes (often called the target of the merge).

Once these three arguments are specified, the two trees are compared, and the resulting differences are
applied to the target working copy as local modifications. When the command is done, the results are no

2In the future, the Subversion project plans to use (or invent) an expanded patch format that describes changesin tree structure and properties.

53

Branching and Merging

different than if you had hand-edited the files, or run various svn add or svn delete commands yourself.
If you like the results, you can commit them. If you don't like the results, you can simply svn revert al
of the changes.

The syntax of svn merge alows you to specify the three necessary arguments rather flexibly. Here are
some examples:

$ svn nerge http://svn. exanpl e.com repos/ branchl@y50 \
http://svn. exanpl e. coni repos/ branch2@12 \
ny-wor ki ng- copy

$ svn nmerge -r 100: 200 http://svn. exanpl e. com repos/trunk my-worki ng- copy
$ svn nerge -r 100: 200 http://svn. exanpl e. com repos/trunk

The first syntax lays out al three arguments explicitly, naming each tree in the form URL@REV and
naming the working copy target. The second syntax can be used as a shorthand for situations when
you're comparing two different revisions of the same URL. The last syntax shows how the working-
copy argument is optional; if omitted, it defaults to the current directory.

Best Practices for Merging

Tracking Merges Manually

Merging changes sounds simple enough, but in practice it can become a headache. The problem isthat if
you repeatedly merge changes from one branch to another, you might accidentally merge the same
change twice. When this happens, sometimes things will work fine. When patching a file, Subversion
typically notices if the file aready has the change, and does nothing. But if the already-existing change
has been modified in any way, you'll get a conflict.

Ideally, your version control system should prevent the double-application of changes to a branch. It
should automatically remember which changes a branch has already received, and be able to list them
for you. It should use this information to help automate merges as much as possible.

Unfortunately, Subversion is not such a system. Like CV'S, Subversion does not yet record any informa-
tion about merge operations. When you commit local modifications, the repository has no idea whether
those changes came from running svn mer ge, or from just hand-editing the files.

What does this mean to you, the user? It means that until the day Subversion grows this feature, you'll
have to track merge information yourself. The best place to do this is in the commit log-message. As
demonstrated in the earlier example, it's recommended that your log-message mention a specific revi-
sion number (or range of revisions) that are being merged into your branch. Later on, you can run svn
log to review which changes your branch aready contains. This will alow you to carefully construct a
subsequent svn mer ge command that won't be redundant with previously ported changes.

In the next section, we'll show some examples of thistechniquein action.

Previewing Merges

Because merging only results in local modifications, it's not usually a high-risk operation. If you get the
merge wrong the first time, simply svn revert the changes and try again.

It's possible, however, that your working copy might already have local modifications. The changes ap-
plied by a merge will be mixed with your pre-existing ones, and running svn revert is no longer an op-
tion. The two sets of changes may be impossible to separate.

54

Branching and Merging

In cases like this, people take comfort in being able to predict or examine merges before they happen.
One simple way to do that is to run svn diff with the same arguments you plan to pass to svn merge, as
we already showed in our first example of merging. Another method of previewing is to pass the -

- dry- r un option to the merge command:

$ svn nerge --dry-run -r 343:344 http://svn. exanpl e. coni repos/ cal c/trunk
U integer.c

$ svn status
nothing printed, working copy is still unchanged.

The - - dry-run option doesn't actually apply any local changes to the working copy. It only shows
status codes that would be printed in areal merge. It's useful for getting a“high level” preview of the po-
tential merge, for those times when running svn diff gives too much detail.

Subversion and Changesets

Everyone seems to have a dlightly different definition of “changeset”, or at least a different expectation of
what it means for a version control system to have “changeset features’. For our purpose, let's say that a
changeset is just a collection of changes with a unique name. The changes might include textual edits to file
contents, modifications to tree structure, or tweaks to metadata. In more common speak, a changeset is just a
patch with a name you can refer to.

In Subversion, a global revision number N names a tree in the repository: it's the way the repository looked
after the Nth commit. It's also the name of an implicit changeset: if you compare tree N with tree N-1, you can
derive the exact patch that was committed. For this reason, it's easy to think of “revision N” as not just a tree,
but a changeset as well. If you use an issue tracker to manage bugs, you can use the revision numbers to refer
to particular patches that fix bugs—for example, “this issue was fixed by revision 9238.”. Somebody can then
run svn log -r 9238 to read about the exact changeset which fixed the bug, and run svn diff -r9237:9238 to see
the patch itself. And Subversion's mer ge command also uses revision numbers. You can merge specific
changesets from one branch to another by naming them in the merge arguments: svn merge -r9237:9238
would merge changeset #9238 into your working copy.

Merge Conflicts

Just like the svn update command, svn mer ge applies changes to your working copy. And therefore it's
also capable of creating conflicts. The conflicts produced by svn merge, however, are sometimes differ-
ent, and this section explains those differences.

To begin with, assume that your working copy has no local edits. When you svn update to a particular
revision, the changes sent by the server will aways apply “cleanly” to your working copy. The server
produces the delta by comparing two trees: a virtual snapshot of your working copy, and the revision
tree you're interested in. Because the left-hand side of the comparison is exactly equal to what you
already have, the deltais guaranteed to correctly convert your working copy into the right-hand tree.

But svn merge has no such guarantees and can be much more chaotic: the user can ask the server to
compare any two trees at al, even ones that are unrelated to the working copy! This means there's large
potential for human error. Users will sometimes compare the wrong two trees, creating a delta that
doesn't apply cleanly. svn merge will do its best to apply as much of the delta as possible, but some
parts may be impossible. Just like the Unix patch command sometimes complains about “failed hunks”,
svn merge will complain about “skipped targets’:

$ svn nerge -r 1288:1351 http://svn. exanpl e. conl repos/ branch
U foo.c

55

Branching and Merging

U bar.c

Ski pped missing target: 'baz.c'
U glub.c

C glorb.h

$

In the previous example it might be the case that baz. ¢ exists in both snapshots of the branch being
compared, and the resulting delta wants to change the file's contents, but the file doesn't exist in the
working copy. Whatever the case, the “ skipped” message means that the user is most likely comparing
the wrong two trees; they're the classic sign of driver error. When this happens, it's easy to recursively
revert all the changes created by the merge (svn revert --recursive), delete any unversioned files or dir-
ectories |eft behind after the revert, and re-run svn mer ge with different arguments.

Also notice that the previous example shows a conflict happening on gl or b. h. We aready stated that
the working copy has no local edits: how can a conflict possibly happen? Again, because the user can
use svn merge to define and apply any old delta to the working copy, that delta may contain textual
changes that don't cleanly apply to aworking file, even if the file has no local modifications.

Another small difference between svn update and svn mer ge are the names of the full-text files created
when a conflict happens. In the section called “Resolve Conflicts (Merging Others' Changes)”, we saw
that an update produces files named fil enane. nine, fil ename.r OLDREV, and fil e-
name. r NEWREV. When svn merge produces a conflict, though, it creates three files named fi | e-
name. wor ki ng, filenanme.left, and fil enane. right. In this case, the terms “left” and
“right” are describing which side of the double-tree comparison the file came from. In any case, these
differing names will help you distinguish between conflicts that happened as aresult of an update versus
ones that happened as a result of a merge.

Noticing or Ignoring Ancestry

When conversing with a Subversion developer, you might very likely hear reference to the term
ancestry. Thisword is used to describe the relationship between two objects in arepository: if they'rere-
lated to each other, then one object is said to be an ancestor of the other.

For example, suppose you commit revision 100, which includes a change to a file f 00. ¢c. Then
f00. c@®9 is an “ancestor” of f 00. c@00. On the other hand, suppose you commit the deletion of
f 00. ¢ in revision 101, and then add a new file by the same name in revision 102. In this case,
f00. c@®9 and f 00. c@02 may appear to be related (they have the same path), but in fact are com-
pletely different objects in the repository. They share no history or “ancestry”.

The reason for bringing this up is to point out an important difference between svn diff and svn merge.
The former command ignores ancestry, while the latter command is quite sensitive to it. For example, if
you asked svn diff to compare revisions 99 and 102 of f 0o. ¢, you would see line-based diffs; the
di ff command is blindly comparing two paths. But if you asked svnh merge to compare the same two
objects, it would notice that they're unrelated and first attempt to delete the old file, then add the new
file; the output would indicate a deletion followed by an add:

Most merges involve comparing trees that are ancestrally related to one another, and therefore svn
mer ge defaults to this behavior. Occasionally, however, you may want the ner ge command to com-
pare two unrelated trees. For example, you may have imported two source-code trees representing dif-
ferent vendor releases of a software project (see the section called “Vendor branches’). If you asked svn
mer ge to compare the two trees, you'd see the entire first tree being deleted, followed by an add of the
entire second tree!

56

Branching and Merging

In these situations, you'll want svn merge to do a path-based comparison only, ignoring any relations
between files and directories. Add the - - i gnor e- ancest ry option to your merge command, and it
will behave just like svn diff. (And conversely, the - - not i ce- ancest ry option will cause svn diff
to behave like the mer ge command.)

Common Use-Cases

There are many different uses for branching and svn merge, and this section describes the most com-
mon ones you're likely to run into.

Merging a Whole Branch to Another

To complete our running example, we'll move forward in time. Suppose several days have passed, and
many changes have happened on both the trunk and your private branch. Suppose that you've finished
working on your private branch; the feature or bug fix is finally complete, and now you want to merge
all of your branch changes back into the trunk for othersto enjoy.

So how do we use svn merge in this scenario? Remember that this command compares two trees, and
applies the differences to a working copy. So to receive the changes, you need to have a working copy
of the trunk. We'll assume that either you still have your original one lying around (fully updated), or
that you recently checked out a fresh working copy of / cal ¢/ t r unk.

But which two trees should be compared? At first glance, the answer may seem obvious: just compare
the latest trunk tree with your latest branch tree. But beware—this assumption is wrong, and has burned
many a new user! Since svn mer ge operates like svn diff, comparing the latest trunk and branch trees
will not merely describe the set of changes you made to your branch. Such a comparison shows too
many changes. it would not only show the addition of your branch changes, but aso the removal of
trunk changes that never happened on your branch.

To express only the changes that happened on your branch, you need to compare the initial state of your
branch to its final state. Using svn log on your branch, you can see that your branch was created in revi-
sion 341. And the final state of your branch is simply a matter of using the HEAD revision. That means
you want to compare revisions 341 and HEAD of your branch directory, and apply those differencesto a
working copy of the trunk.

(i

_) A nice way of finding the revision in which a branch was created (the “base” of the
branch) is to use the - - st op- on- copy option to svn log. The log subcommand will
normally show every change ever made to the branch, including tracing back through the
copy which created the branch. So normally, you'll see history from the trunk as well. The
- - st op-on-copy will halt log output as soon as svn log detects that its target was
copied or renamed.

So in our continuing example,

$ svn log --verbose --stop-on-copy \
http://svn. exanpl e. coni repos/ cal c/ branches/ my- cal c- branch

r341 | user | 2002-11-03 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines
Changed pat hs:
A /cal c/ branches/ my-cal c-branch (from/cal c/trunk: 340)

$

57

Branching and Merging

As expected, the final revision printed by this command is the revision in which ny-
cal c- br anch was created by copying.

Here's the final merging procedure, then:

$ cd calc/trunk
$ svn update
At revision 405.

$ svn merge -r 341:405 http://svn.exanpl e. com repos/ cal ¢/ branches/ my-cal c- branch
U integer.c

button.c

Makefile

]
]
$ svn status
M integer.c
M
M

button.c
Makefil e
...examne the diffs, conpile, test, etc...
$ svn commit -m "Merged ny-cal c-branch changes r341: 405 into the trunk."
Sendi ng i nteger.c
Sendi ng button.c
Sendi ng Makefil e

Transmtting file data ...
Conmitted revision 406.

Again, notice that the commit log message very specifically mentions the range of changes that was
merged into the trunk. Always remember to do this, because it's critical information you'll need later on.

For example, suppose you decide to keep working on your branch for another week, in order to com-
plete an enhancement to your original feature or bug fix. The repository's HEAD revision is now 480, and
you're ready to do another merge from your private branch to the trunk. But as discussed in the section
called “Best Practices for Merging”, you don't want to merge the changes you've already merged before;
you only want to merge everything “new” on your branch since the last time you merged. Thetrick isto
figure out what's new.

The first step isto run svn log on the trunk, and look for a log message about the last time you merged
from the branch:

$ cd cal c/trunk
$ svn log

r406 | user | 2004-02-08 11:17:26 -0600 (Sun, 08 Feb 2004) | 1 line
Mer ged ny-cal c-branch changes r341: 405 into the trunk.

Ahal Since al branch-changes that happened between revisions 341 and 405 were previously merged to
the trunk as revision 406, you now know that you want to merge only the branch changes after that—by
comparing revisions 406 and HEAD.

$ cd calc/trunk

58

Branching and Merging

$ svn update
At revision 480.

We notice that HEAD is currently 480, so we use it to do the nerge:

$ svn nerge -r 406:480 http://svn.exanpl e.confrepos/cal c/ branches/ ny-cal c-branch

U integer.c

U button.c

U Makefile

$ svn conmmit -m "Merged ny-cal c-branch changes r406:480 into the trunk."
Sendi ng i nteger.c

Sendi ng button.c

Sendi ng Makefil e

Transmitting file data ...
Conmitted revision 481.

Now the trunk contains the complete second wave of changes made to the branch. At this point, you can
either delete your branch (we'll discuss thislater on), or continue working on your branch and repeat this
procedure for subsequent merges.

Undoing Changes

Another common use for svn mergeisto roll back a change that has already been committed. Suppose
you're working away happily on a working copy of / cal ¢/t r unk, and you discover that the change
made way back in revision 303, which changed i nt eger . c, iscompletely wrong. It never should have
been committed. Y ou can use svn merge to “undo” the change in your working copy, and then commit
the local modification to the repository. All you need to do is to specify areverse difference:

$ svn nerge -r 303:302 http://svn.exanpl e.con repos/cal c/trunk
U integer.c

$ svn status
M integer.c

$ svn diff

#'verify that the change is renoved

$ svn commit -m "Undoi ng change conmitted in r303."
Sendi ng i nteger.c

Transmtting file data .

Committed revision 350.

One way to think about arepository revision is as a specific group of changes (some version control sys-
tems call these changesets). By using the - r switch, you can ask svn merge to apply a changeset, or
whole range of changesets, to your working copy. In our case of undoing a change, we're asking svn
mer ge to apply changeset #303 to our working copy backwards.

Keep in mind that rolling back a change like this is just like any other svn merge operation, so you
should use svn status and svn diff to confirm that your work isin the state you want it to bein, and then
use svn commit to send the final version to the repository. After committing, this particular changeset is
no longer reflected in the HEAD revision.

Again, you may be thinking: well, that really didn't undo the commit, did it? The change still exists in
revision 303. If somebody checks out a version of the cal ¢ project between revisions 303 and 349,
they'll still see the bad change, right?

59

Branching and Merging

Yes, that's true. When we talk about “removing” a change, we're really talking about removing it from
HEAD. The original change still exists in the repository's history. For most situations, this is good
enough. Most people are only interested in tracking the HEAD of a project anyway. There are special
cases, however, where you really might want to destroy all evidence of the commit. (Perhaps somebody
accidentally committed a confidential document.) Thisisn't so easy, it turns out, because Subversion was
deliberately designed to never lose information. Revisions are immutable trees which build upon one an-
other. Removing a revision from history would cause a domino effect, creating chaos in all subsequent
revisions and possibly invalidating all working copies. 3

Resurrecting Deleted Items

The great thing about version control systems is that information is never lost. Even when you delete a
file or directory, it may be gone from the HEAD revision, but the object still exists in earlier revisions.
One of the most common questions new users ask is, “How do | get my old file or directory back?’.

The first step is to define exactly which item you're trying to resurrect. Here's a useful metaphor: you
can think of every object in the repository as existing in a sort of two-dimensiona coordinate system.
The first coordinate is a particular revision tree, and the second coordinate is a path within that tree. So
every version of your file or directory can be defined by a specific coordinate pair.

Subversion has no At t i ¢ directory like CV'S does, 450 you need to use svn log to discover the exact
coordinate pair you wish to resurrect. A good strategy is to run svn log --verbose in a directory which
used to contain your deleted item. The - - ver bose option shows alist of al changed items in each re-
vision; al you need to do is find the revision in which you deleted the file or directory. Y ou can do this
visualy, or by using another tool to examine the log output (via grep, or perhaps via an incremental
search in an editor).

$ cd parent-dir
$ svn |l og --verbose

r808 | joe | 2003-12-26 14:29:40 -0600 (Fri, 26 Dec 2003) | 3 lines
Changed pat hs:

D /calc/trunk/real.c

M /cal c/trunk/integer.c

Added fast fourier transformfunctions to integer.c.
Renmoved real .c because code now i n double. c.

In the example, we're assuming that you're looking for a deleted file r eal . ¢. By looking through the
logs of a parent directory, you've spotted that this file was deleted in revision 808. Therefore, the last
version of the file to exist was in the revision right before that. Conclusion: you want to resurrect the
path/ cal ¢/t runk/real . c fromrevision 807.

That was the hard part—the research. Now that you know what you want to restore, you have two differ-
ent choices.

One option is to use svn merge to apply revision 808 “in reverse”. (We've already discussed how to
undo changes, see the section called “Undoing Changes’.) This would have the effect of re-adding
real . c asaloca modification. The file would be scheduled for addition, and after a commit, the file
would again exist in HEAD.

The Subversion project has plans, however, to someday implement an svnadmin obliterate command that would accomplish the task of per-
manently deleting information. In the meantime, see the section called “svndumpfilter” for a possible workaround.
“Because CV'S doesn't version trees, it createsan At t i ¢ areawithin each repository directory as away of remembering deleted files.

60

Branching and Merging

In this particular example, however, thisis probably not the best strategy. Reverse-applying revision 808
would not only schedule r eal . ¢ for addition, but the log message indicates that it would also undo
certain changesto i nt eger . ¢, which you don't want. Certainly, you could reverse-merge revision 808
and then svn revert the local modificationsto i nt eger . c, but this technique doesn't scale well. What
if there were 90 files changed in revision 8087

A second, more targeted strategy is not to use svn merge at all, but rather the svn copy command.
Simply copy the exact revision and path “ coordinate pair” from the repository to your working copy:

$ svn copy --revision 807 \
http://svn. exanpl e.conirepos/calc/trunk/real.c ./real.c

$ svn status
A + real.c

$ svn commit -m"Resurrected real.c fromrevision 807, /calc/trunk/real.c.
Addi ng real.c

Transmitting file data .

Committed revision 1390.

The plus sign in the status output indicates that the item isn't merely scheduled for addition, but sched-
uled for addition “with history”. Subversion remembers where it was copied from. In the future, running
svn log on this file will traverse back through the file's resurrection and through al the history it had pri-
or to revision 807. In other words, thisnew r eal . ¢ isn't really new; it's a direct descendant of the ori-
gina, deleted file.

Although our example shows us resurrecting afile, note that these same techniques work just as well for
resurrecting deleted directories.

Common Branching Patterns

Version control is most often used for software development, so here's a quick peek at two of the most
common branching/merging patterns used by teams of programmers. If you're not using Subversion for
software development, feel free to skip this section. If you're a software developer using version control
for the first time, pay close attention, as these patterns are often considered best practices by experienced
folk. These processes aren't specific to Subversion; they're applicable to any version control system.
Still, it may help to see them described in Subversion terms.

Release Branches

Most software has atypical lifecycle: code, test, release, repeat. There are two problems with this pro-
cess. First, developers need to keep writing new features while quality-assurance teams take time to test
supposedly-stable versions of the software. New work cannot halt while the software is tested. Second,
the team almost always needs to support older, released versions of software; if a bug is discovered in
the latest code, it most likely existsin released versions as well, and customers will want to get that bug-
fix without having to wait for amajor new release.

Here's where version control can help. The typical procedure looks like this:
» Developers commit all new work to the trunk. Day-to-day changes are committed to / t r unk: new
features, bugfixes, and so on.

e Thetrunk is copied to a “release” branch. When the team thinks the software is ready for release
(say, al.0release), then/ t r unk might be copiedto/ br anches/ 1. 0.

» Teams continue to work in parallel. One team begins rigorous testing of the release branch, while

61

Branching and Merging

another team continues new work (say, for version 2.0) on/ t r unk. If bugs are discovered in either
location, fixes are ported back and forth as necessary. At some point, however, even that process
stops. The branch is“frozen” for final testing right before arelease.

» The branch is tagged and released. When testing is complete, / br anches/ 1. 0 is copied to /
t ags/ 1. 0. 0 asareference snapshot. Thetag is packaged and released to customers.

* The branch is maintained over time. While work continues on / t r unk for version 2.0, bugfixes
continue to be ported from / t r unk to / br anches/ 1. 0. When enough bugfixes have accumu-
lated, management may decide to do a 1.0.1 release: / branches/ 1.0 is copied to /
tags/ 1. 0. 1, and the tag is packaged and released.

This entire process repeats as the software matures. when the 2.0 work is complete, a new 2.0 release
branch is created, tested, tagged, and eventually released. After some years, the repository ends up with
a number of release branches in “maintenance” mode, and a number of tags representing final shipped
versions.

Feature Branches

A feature branch is the sort of branch that's been the dominant example in this chapter, the one you've
been working on while Sally continues to work on/ t r unk. It's atemporary branch created to work on
a complex change without interfering with the stability of / t r unk. Unlike release branches (which may
need to be supported forever), feature branches are born, used for a while, merged back to the trunk,
then ultimately deleted. They have afinite span of usefulness.

Again, project policies vary widely concerning exactly when it's appropriate to create a feature branch.
Some projects never use feature branches at all: commitsto/ t r unk are afree-for-all. The advantage to
this system is that it's smple—nobody needs to learn about branching or merging. The disadvantage is
that the trunk code is often unstable or unusable. Other projects use branches to an extreme: no changeis
ever committed to the trunk directly. Even the most trivial changes are created on a short-lived branch,
carefully reviewed and merged to the trunk. Then the branch is deleted. This system guarantees an ex-
ceptionally stable and usable trunk at al times, but at the cost of tremendous process overhead.

Most projects take a middle-of-the-road approach. They commonly insist that / t r unk compile and
pass regression tests at al times. A feature branch is only required when a change requires a large num-
ber of destabilizing commits. A good rule of thumb is to ask this question: if the developer worked for
days in isolation and then committed the large change al at once (so that / t r unk were never destabil-
ized), would it be too large a change to review? If the answer to that question is “yes’, then the change
should be developed on a feature branch. As the developer commits incremental changes to the branch,
they can be easily reviewed by peers.

Finally, there's the issue of how to best keep a feature branch in “sync” with the trunk as work pro-
gresses. As we mentioned earlier, there's a great risk to working on a branch for weeks or months; trunk
changes may continue to pour in, to the point where the two lines of development differ so greatly that it
may become a nightmare trying to merge the branch back to the trunk.

This situation is best avoided by regularly merging trunk changes to the branch. Make up a policy: once
aweek, merge the last week's worth of trunk changes to the branch. Take care when doing this; the mer-
ging needs to be hand-tracked to avoid the problem of repeated merges (as described in the section
called “Tracking Merges Manually”). You'll need to write careful log messages detailing exactly which
revision ranges have been merged already (as demonstrated in the section called “Merging a Whole
Branch to Another”). It may sound intimidating, but it's actually pretty easy to do.

At some point, you'll be ready to merge the “ synchronized” feature branch back to the trunk. To do this,
begin by doing a final merge of the latest trunk changes to the branch. When that's done, the latest ver-
sions of branch and trunk will be absolutely identical except for your branch changes. So in this special
case, you would merge by comparing the branch with the trunk:

62

Branching and Merging

$ cd trunk-worki ng- copy

$ svn update
At revision 1910.

$ svn nerge http://svn.exanpl e.com repos/cal ¢c/trunk@910 \
htt p://svn. exanpl e. conl repos/ cal ¢/ branches/ mybranch@910
real.c
i nteger.c
newdi rect ory
newdi rectory/ newfil e

1 >>CC

By comparing the HEAD revision of the trunk with the HEAD revision of the branch, you're defining a
delta that describes only the changes you made to the branch; both lines of development already have all
of the trunk changes.

Another way of thinking about this pattern is that your weekly sync of trunk to branch is analogous to
running svn update in aworking copy, while the final merge step is analogous to running svn commit
from a working copy. After al, what else is a working copy but a very shallow private branch? It's a
branch that's only capable of storing one change at atime.

Switching a Working Copy

The svn switch command transforms an existing working copy into a different branch. While this com-
mand isn't strictly necessary for working with branches, it provides a nice shortcut to users. In our earlier
example, after creating your private branch, you checked out a fresh working copy of the new repository
directory. Instead, you can simply ask Subversion to change your working copy of / cal ¢/ trunk to
mirror the new branch location:

$ cd calc

$ svn info | grep URL
URL: http://svn.exanpl e.conirepos/cal c/trunk

$ svn switch http://svn. exanpl e. com repos/ cal c/ branches/ nmy-cal c- branch

U integer.c
] button.c
] Makefil e

Updated to revision 341.

$ svn info | grep URL
URL: http://svn.exanpl e.conirepos/cal c/ branches/ my-cal c-branch

After “switching” to the branch, your working copy is no different than what you would get from doing
a fresh checkout of the directory. And it's usually more efficient to use this command, because often
branches only differ by a small degree. The server sends only the minimal set of changes necessary to
make your working copy reflect the branch directory.

The svn switch command also takes a - - r evi si on (- r) option, so you need not always move your
working copy to the “tip” of the branch.

Of course, most projects are more complicated than our cal ¢ example, containing multiple subdirector-
ies. Subversion users often follow a specific algorithm when using branches:

63

Branching and Merging

1. Copy the project's entire “trunk” to a new branch directory.

2. Switch only part of the trunk working copy to mirror the branch.

In other words, if a user knows that the branch-work only needs to happen on a specific subdirectory,
they use svn switch to move only that subdirectory to the branch. (Or sometimes users will switch just a
single working file to the branch!) That way, they can continue to receive normal “trunk” updates to
most of their working copy, but the switched portions will remain immune (unless someone commits a
change to their branch). This feature adds a whole new dimension to the concept of a “mixed working
copy”—not only can working copies contain a mixture of working revisions, but a mixture of repository
locations as well.

If your working copy contains a number of switched subtrees from different repository locations, it con-
tinues to function as normal. When you update, you'll receive patches to each subtree as appropriate.
When you commit, your local changes will still be applied as a single, atomic change to the repository.

Note that while it's okay for your working copy to reflect a mixture of repository locations, these loca
tions must all be within the same repository. Subversion repositories aren't yet able to communicate with
one another; that's a feature planned beyond Subversion 1.0°

Switches and Updates

Have you noticed that the output of svn switch and svn update look the same? The swi t ch command is ac-
tually a superset of the update command.

When you run svn update, you're asking the repository to compare two trees. The repository does so, and
then sends a description of the differences back to the client. The only difference between svn switch and svn
updateisthat the updat e command always compares two identical paths.

That is, if your working copy is a mirror of / cal ¢/t r unk, then svn update will automatically compare
your working copy of / cal c/trunk to/cal c/trunk in the HEAD revision. If you're switching your
working copy to a branch, then svn switch will compare your working copy of / cal ¢/ t r unk to some other
branch-directory in the HEAD revision.

In other words, an update moves your working copy through time. A switch moves your working copy
through time and space.

Because svn switch is essentially a variant of svn update, it shares the same behaviors; any local modi-
fications in your working copy are preserved when new data arrives from the repository. This allows
you to perform all sorts of clever tricks.

For example, suppose you have aworking copy of / cal ¢/ t r unk and make a number of changesto it.
Then you suddenly realize that you meant to make the changes to a branch instead. No problem! When
you svn switch your working copy to the branch, the local changes will remain. Y ou can then test and
commit them to the branch.

Tags

Another common version control concept isatag. A tag isjust a*“snapshot” of aproject in time. In Sub-

5Y ou can, however, use svn switch with the - - r el ocat e switch if the URL of your server changes and you don't want to abandon an existing
working copy. See the svn switch section in Chapter 9, Subversion Complete Reference for more information and an example.

64

Branching and Merging

version, this idea already seems to be everywhere. Each repository revision is exactly that—a snapshot
of the filesystem after each commit.

However, people often want to give more human-friendly namesto tags, liker el ease- 1. 0. And they
want to make snapshots of smaller subdirectories of the filesystem. After al, it's not so easy to remem-
ber that release-1.0 of a piece of softwareis a particular subdirectory of revision 4822.

Creating a Simple Tag

Once again, svn copy comes to the rescue. If you want to create a snapshot of / cal ¢/t r unk exactly
asit looks in the HEAD revision, then make a copy of it:

$ svn copy http://svn. exanpl e.conlrepos/cal c/trunk \
http://svn. exanpl e. con repos/cal c/tags/rel ease-1.0 \
-m"Tagging the 1.0 rel ease of the 'calc' project."

Committed revision 351.

This example assumesthat a/ cal c/ t ags directory already exists. (If it doesn't, see svn mkdir). After
the copy completes, the new r el ease- 1. 0 directory is forever a snapshot of how the project looked
in the HEAD revision at the time you made the copy. Of course you might want to be more precise about
exactly which revision you copy, in case somebody else may have committed changes to the project
when you weren't looking. So if you know that revision 350 of / cal ¢/t r unk is exactly the snapshot
you want, you can specify it by passing - r 350 to the svn copy command.

But wait a moment: isn't this tag-creation procedure the same procedure we used to create a branch?
Yes, infact, itis. In Subversion, there's no difference between atag and a branch. Both are just ordinary
directories that are created by copying. Just as with branches, the only reason a copied directory is a
“tag” is because humans have decided to treat it that way: as long as nobody ever commits to the direct-
ory, it forever remains a snapshot. If people start committing to it, it becomes a branch.

If you are administering a repository, there are two approaches you can take to managing tags. The first
approach is “hands off”: as a matter of project policy, decide where your tags will live, and make sure
all users know how to treat the directories they copy in there. (That is, make sure they know not to com-
mit to them.) The second approach is more paranoid: you can use one of the access-control scripts
provided with Subversion to prevent anyone from doing anything but creating new copies in the tags-
area (See Chapter 6, Server Configuration.) The paranoid approach, however, isn't usually necessary. If
a user accidentally commits a change to atag-directory, you can simply undo the change as discussed in
the previous section. Thisisversion control, after all.

Creating a Complex Tag

Sometimes you may want your “snapshot” to be more complicated than a single directory at asingle re-
vision.

For example, pretend your project is much larger than our cal ¢ example: suppose it contains a number
of subdirectories and many more files. In the course of your work, you may decide that you need to cre-
ate aworking copy that is designed to have specific features and bug fixes. You can accomplish this by
selectively backdating files or directories to particular revisions (using svn update -r liberally), or by
switching files and directories to particular branches (making use of svn switch). When you're done,
your working copy is a hodgepodge of repository locations from different revisions. But after testing,
you know it's the precise combination of data you need.

Time to make a snapshot. Copying one URL to another won't work here. In this case, you want to make
a snapshot of your exact working copy arrangement and store it in the repository. Luckily, svn copy ac-
tually has four different uses (which you can read about in Chapter 9), including the ability to copy a

65

Branching and Merging

working-copy tree to the repository:

$1Is
ny- wor ki ng- copy/

$ svn copy ny-worki ng-copy http://svn. exanpl e. coni repos/ cal c/tags/ nmytag

Committed revision 352.

Now there is a new directory in the repository, / cal ¢/ t ags/ nyt ag, which is an exact snapshot of
your working copy—mixed revisions, URLs, and all.

Other users have found interesting uses for this feature. Sometimes there are situations where you have a
bunch of local changes made to your working copy, and you'd like a collaborator to see them. Instead of
running svn diff and sending a patch file (which won't capture tree changes, symlink changes or changes
in properties), you can instead use svn copy to “upload” your working copy to a private area of the re-
pository. Your collaborator can then either checkout a verbatim copy of your working copy, or use svn
mer ge to receive your exact changes.

Branch Maintenance

You may have noticed by now that Subversion is extremely flexible. Because it implements branches
and tags with the same underlying mechanism (directory copies), and because branches and tags appear
in normal filesystem space, many people find Subversion intimidating. It's almost too flexible. In this
section, we'll offer some suggestions for arranging and managing your data over time.

Repository Layout

There are some standard, recommended ways to organize a repository. Most people create at r unk dir-
ectory to hold the “main line” of development, a br anches directory to contain branch copies, and a
t ags directory to contain tag copies. If a repository holds only one project, then often people create
these top-level directories:

/trunk
/ branches
/tags

If arepository contains multiple projects, admins typically index their layout by project (see the section
called “Choosing a Repository Layout” to read more about “ project roots’):

[pai nt/trunk

/ pai nt/ branches
/ pai nt/tags
/cal c/trunk

/ cal c/ branches
/ cal c/tags

Of course, you're free to ignore these common layouts. You can create any sort of variation, whatever
works best for you or your team. Remember that whatever you choose, it's not a permanent commit-
ment. Y ou can reorganize your repository at any time. Because branches and tags are ordinary director-
ies, the svn move command can move or rename them however you wish. Switching from one layout to
another is just a matter of issuing a series of server-side moves; if you don't like the way things are or-
ganized in the repository, just juggle the directories around.

66

Branching and Merging

Remember, though, that while moving directories may be easy to do, you need to be considerate of your
users as well. Your juggling can be disorienting to users with existing working copies. If a user has a
working copy of a particular repository directory, your svn move operation might remove the path from
the latest revision. When the user next runs svn update, she will be told that her working copy repres-
ents a path that no longer exists, and the user will be forced to svn switch to the new location.

Data Lifetimes

Another nice feature of Subversion's model is that branches and tags can have finite lifetimes, just like
any other versioned item. For example, suppose you eventually finish all your work on your personal
branch of the cal ¢ project. After merging all of your changes back into / cal ¢/t r unk, there's no
need for your private branch directory to stick around anymore:

$ svn delete http://svn. exanpl e. coni repos/ cal c/ branches/ my-cal c- branch \
-m "Renovi ng obsol ete branch of calc project.”

Committed revision 375.

And now your branch is gone. Of course it's not really gone: the directory is simply missing from the
HEAD revision, no longer distracting anyone. If you use svn checkout, svn switch, or svn list to exam-
ine an earlier revision, you'll still be able to see your old branch.

If browsing your deleted directory isn't enough, you can always bring it back. Resurrecting data is very
easy in Subversion. If there's a deleted directory (or file) that you'd like to bring back into HEAD, simply
use svn copy -r to copy it from the old revision:

$ svn copy -r 374 http://svn.exanpl e. confrepos/cal c/ branches/ ny-cal c-branch \
http://svn. exanpl e. coni r epos/ cal ¢/ branches/ ny-cal c- branch

Committed revision 376.

In our example, your personal branch had arelatively short lifetime: you may have created it to fix abug
or implement a new feature. When your task is done, so is the branch. In software devel opment, though,
it's also common to have two “main” branches running side-by-side for very long periods. For example,
suppose it's time to release a stable version of the cal ¢ project to the public, and you know it's going to
take a couple of months to shake bugs out of the software. Y ou don't want people to add new features to
the project, but you don't want to tell all developers to stop programming either. So instead, you create a
“stable” branch of the software that won't change much:

$ svn copy http://svn. exanpl e.conlrepos/cal c/trunk \
http://svn. exanpl e. com repos/ cal c/ branches/stable-1.0 \
-m"Creating stable branch of calc project.”

Committed revision 377.

And now developers are free to continue adding cutting-edge (or experimental) features to /

cal ¢/ trunk, and you can declare a project policy that only bug fixes are to be committed to /

cal ¢/ branches/ st abl e- 1. 0. That is, as people continue to work on the trunk, a human select-
ively ports bug fixes over to the stable branch. Even after the stable branch has shipped, you'll probably
continue to maintain the branch for along time—that is, as long as you continue to support that release
for customers.

67

Branching and Merging

Summary

We've covered a lot of ground in this chapter. We've discussed the concepts of tags and branches, and
demonstrated how Subversion implements these concepts by copying directories with the svn copy
command. We've shown how to use svh mer ge to copy changes from one branch to another, or roll back
bad changes. We've gone over the use of svn switch to create mixed-location working copies. And
we've talked about how one might manage the organization and lifetimes of branches in arepository.

Remember the Subversion mantra: branches and tags are cheap. So use them liberally!

68

Chapter 5. Repository Administration

The Subversion repository is the central storehouse of versioned data for any number of projects. As
such, it becomes an obvious candidate for all the love and attention an administrator can offer. While the
repository is generally a low-maintenance item, it is important to understand how to properly configure
and carefor it so that potential problems are avoided, and actual problems are safely resolved.

In this chapter, well discuss how to create and configure a Subversion repository. Wel'll also talk about
repository maintenance, including the use of the svnlook and svhadmin tools (which are provided with
Subversion). We'll address some common questions and mistakes, and give some suggestions on how to
arrange the data in the repository.

If you plan to access a Subversion repository only in the role of a user whose data is under version con-
trol (that is, via a Subversion client), you can skip this chapter altogether. However, if you are, or wish
to become, a Subversion repository administrator, ! you should definitely pay attention to this chapter.

Repository Basics

Before jumping into the broader topic of repository administration, let's further define what a repository
is. How does it look? How does it feel? Does it take its tea hot or iced, sweetened, and with lemon? As
an administrator, you'll be expected to understand the composition of a repository both from a logical
perspective—dealing with how data is represented inside the repository—and from a physical nuts-
and-bolts perspective—how a repository looks and acts with respect to non-Subversion tools. The fol-
lowing section covers some of these basic concepts at avery high level.

Understanding Transactions and Revisions

Conceptually speaking, a Subversion repository is a sequence of directory trees. Each tree is a snapshot
of how the files and directories versioned in your repository looked at some point in time. These snap-
shots are created as aresult of client operations, and are called revisions.

Every revision begins life as a transaction tree. When doing a commit, a client builds a Subversion trans-
action that mirrors their local changes (plus any additional changes that might have been made to the re-
pository since the beginning of the client's commit process), and then instructs the repository to store
that tree as the next snapshot in the sequence. If the commit succeeds, the transaction is effectively pro-
moted into a new revision tree, and is assigned a new revision number. If the commit fails for some reas-
on, the transaction is destroyed and the client isinformed of the failure.

Updates work in asimilar way. The client builds a temporary transaction tree that mirrors the state of the
working copy. The repository then compares that transaction tree with the revision tree at the requested
revision (usually the most recent, or “youngest” tree), and sends back information that informs the client
about what changes are needed to transform their working copy into areplica of that revision tree. After
the update completes, the temporary transaction is deleted.

The use of transaction trees is the only way to make permanent changes to a repository's versioned
filesystem. However, it'simportant to understand that the lifetime of atransaction is completely flexible.
In the case of updates, transactions are temporary trees that are immediately destroyed. In the case of
commits, transactions are transformed into permanent revisions (or removed if the commit fails). In the
case of an error or bug, it's possible that a transaction can be accidentally Ieft lying around in the reposit-
ory (not really affecting anything, but still taking up space).

This may sound really prestigious and lofty, but we're just talking about anyone who is interested in that mysterious realm beyond the working
copy where everyone's data hangs out.

69

Repository Administration

In theory, someday whole workflow applications might revolve around more fine-grained control of
transaction lifetime. It is feasible to imagine a system whereby each transaction slated to become a revi-
sion isleft in stasis well after the client finishes describing its changes to repository. This would enable
each new commit to be reviewed by someone else, perhaps a manager or engineering QA team, who can
choose to promote the transaction into arevision, or abort it.

Unversioned Properties

Transactions and revisions in the Subversion repository can have properties attached to them. These
properties are generic key-to-value mappings, and are generally used to store information about the tree
to which they are attached. The names and values of these properties are stored in the repository's
filesystem, along with the rest of your tree data.

Revision and transaction properties are useful for associating information with atree that is not strictly
related to the files and directories in that tree—the kind of information that isn't managed by client
working copies. For example, when a new commit transaction is created in the repository, Subversion
adds a property to that transaction named svn: dat e—a datestamp representing the time that the trans-
action was created. By the time the commit process is finished, and the transaction is promoted to a per-
manent revision, the tree has also been given a property to store the username of the revision's author
(svn: aut hor) and a property to store the log message attached to that revision (svn: | 0g).

Revision and transaction properties are unversioned properties—as they are modified, their previous
values are permanently discarded. Also, while revision trees themselves are immutable, the properties
attached to those trees are not. You can add, remove, and modify revision properties at any time in the
future. If you commit anew revision and later realize that you had some misinformation or spelling error
in your log message, you can simply replace the value of the svn: | og property with a new, corrected

log message.

Repository Data Stores

As of Subversion 1.1, there are two options for storing datain a Subversion repository. One type of re-
pository stores everything in a Berkeley DB database; the other kind stores datain ordinary flat files, us-
ing a custom format. Because Subversion developers often refer to a repository as “the (versioned)
filesystem”, they have adopted the habit of referring to the latter type of repository as FSFS 2 _aver-
sioned filesystem implementation that uses the native OS filesystem to store data.

When a repository is created, an administrator must decide whether it will use Berkeley DB or FSFS.
There are advantages and disadvantages to each, which we'll describe in a bit. Neither back-end is more
“official” than another, and programs which access the repository are insulated from this implementation
detail. Programs have no idea how a repository is storing data; they only see revision and transaction
trees through the repository API.

Table 5.1, “Repository Data Store Comparison” gives a comparative overview of Berkeley DB and
FSFS repositories. The next sections go into detail.

Tableb5.1. Repository Data Store Comparison

Feature Berkeley DB FSFS
Sensitivity to interruptions very; crashes and permission prob-|quiteinsensitive.
lems can leave the database
“wedged”, requiring journaled recov-
ery procedures.
Usable from a read-only mount no yes

2Pronounced “fuzz-fuzz’, if Jack Repenning has anything to say about it.

70

Repository Administration

Feature Berkeley DB FSFS
Platform-independent storage no yes

Usable over network filesystems no yes

Repository size dlightly larger dlightly smaller

Scalability: number of revision trees

database; no problems

some older native filesystems don't
scale well with thousands of entries
inasingle directory.

Scalahility: directories with many [slower faster
files
Speed: checking out latest code faster slower

Speed: large commits

slower, but work is spread throughout
commit

faster, but finalization delay may
cause client timeouts

Group permissions handling

sensitive to user umask problems;
best if accessed by only one user.

works around umask problems

Code maturity

in use since 2001

in use since 2004

Berkeley DB

When the initial design phase of Subversion wasin progress, the developers decided to use Berkeley DB
for a variety of reasons, including its open-source license, transaction support, reliability, performance,
API simplicity, thread-safety, support for cursors, and so on.

Berkeley DB provides real transaction support—perhaps its most powerful feature. Multiple processes
accessing your Subversion repositories don't have to worry about accidentally clobbering each other's
data. The isolation provided by the transaction system is such that for any given operation, the Subver-
sion repository code sees a static view of the database—not a database that is constantly changing at the
hand of some other process—and can make decisions based on that view. If the decision made happens
to conflict with what another process is doing, the entire operation is rolled back asif it never happened,
and Subversion gracefully retries the operation against a new, updated (and yet till static) view of the

database.

Another great feature of Berkeley DB is hot backups—the ability to backup the database environment

without taking it “offling”.

Well discuss how to backup your repository in the section called

“Repository Backup”, but the benefits of being able to make fully functional copies of your repositories
without any downtime should be obvious.

Berkeley DB is aso a very reliable database system. Subversion uses Berkeley DB's logging facilities,
which means that the database first writes to on-disk log files a description of any modifications it is
about to make, and then makes the modification itself. Thisis to ensure that if anything goes wrong, the
database system can back up to a previous checkpoint—a location in the log files known not to be cor-
rupt—and replay transactions until the data is restored to a usable state. See the section called
“Managing Disk Space” for more about Berkeley DB log files.

But every rose has its thorn, and so we must note some known limitations of Berkeley DB. First, Berke-
ley DB environments are not portable. Y ou cannot simply copy a Subversion repository that was created
on a Unix system onto a Windows system and expect it to work. While much of the Berkeley DB data-
base format is architecture independent, there are other aspects of the environment that are not.
Secondly, Subversion uses Berkeley DB in a way that will not operate on Windows 95/98 systems—if
you need to house a repository on a Windows machine, stick with Windows 2000 or Windows XP. Also,
you should never keep a Berkeley DB repository on a network share. While Berkeley DB promises to
behave correctly on network shares that meet a particular set of specifications, almost no known shares
actually meet all those specifications.

Finally, because Berkeley DB is alibrary linked directly into Subversion, it's more sensitive to interrup-

71

Repository Administration

FSFS

tions than a typical relationa database system. Most SQL systems, for example, have a dedicated server
process that mediates all access to tables. If a program accessing the database crashes for some reason,
the database daemon natices the lost connection and cleans up any mess left behind. And because the
database daemon is the only process accessing the tables, applications don't need to worry about permis-
sion conflicts. These things are not the case with Berkeley DB, however. Subversion (and programs us-
ing Subversion libraries) access the database tables directly, which means that a program crash can leave
the database in a temporarily inconsistent, inaccessible state. When this happens, an administrator needs
to ask Berkeley DB to restore to a checkpoint, which is a bit of an annoyance. Other things can cause a
repository to “wedge” besides crashed processes, such as programs conflicting over ownership and per-
missions on the database files. So while a Berkeley DB repository is quite fast and scalable, it's best
used by a single server process running as one user—such as Apache's httpd or svnserve (see
Chapter 6, Server Configuration)—rather than accessing it as many different usersviafile:/// or
svn+ssh: // URLs. If using a Berkeley DB repository directly as multiple users, be sure to read the
section called “ Supporting Multiple Repository Access Methods'.

In mid-2004, a second type of repository storage system came into being: one which doesn't use a data-
base at all. An FSFS repository storesarevision treein asingle file, and so all of arepository's revisions
can be found in a single subdirectory full of numbered files. Transactions are created in separate subdir-
ectories. When complete, a single transaction file is created and moved to the revisions directory, thus
guaranteeing that commits are atomic. And because a revision file is permanent and unchanging, the re-
pository also can be backed up while “hot”, just like a Berkeley DB repository.

The revision-file format represents a revision's directory structure, file contents, and deltas against files
in other revision trees. Unlike a Berkeley DB database, this storage format is portable across different
operating systems and isn't sensitive to CPU architecture. Because there's no journaling or shared-
memory files being used, the repository can be safely accessed over a network filesystem and examined
in aread-only environment. The lack of database overhead also means that the overall repository sizeis
abit smaller.

FSFS has different performance characteristics too. When committing a directory with a huge number of
files, FSFS uses an O(N) algorithm to append entries, while Berkeley DB uses an O(N”2) algorithm to
rewrite the whole directory. On the other hand, FSFS writes the latest version of afile as a delta against
an earlier version, which means that checking out the latest tree is a bit slower than fetching the fulltexts
stored in a Berkeley DB HEAD revision. FSFS also has alonger delay when finalizing a commit, which
could in extreme cases cause clients to time out when waiting for a response.

The most important distinction, however, is FSFS's inability to be “wedged” when something goes
wrong. If aprocess using a Berkeley DB database runs into a permissions problem or suddenly crashes,
the database is |eft unusable until an administrator recoversiit. If the same scenarios happen to a process
using an FSFS repository, the repository isn't affected at all. At worst, some transaction data is left be-
hind.

The only real argument against FSFS is its relative immaturity compared to Berkeley DB. It hasn't been
used or stress-tested nearly as much, and so alot of these assertions about speed and scalability are just
that: assertions, based on good guesses. In theory, it promises a lower barrier to entry for new adminis-
trators and is less susceptible to problems. In practice, only time will tell.

Repository Creation and Configuration

Creating a Subversion repository is an incredibly simple task. The svnadmin utility, provided with Sub-
version, has a subcommand for doing just that. To create a new repository, just run:

$ svnadm n create /path/to/repos

72

Repository Administration

This creates a hew repository in the directory / pat h/ t o/ r epos. This new repository begins life at
revision 0, which is defined to consist of nothing but the top-level root (/) filesystem directory. Initially,
revision 0 also has a single revision property, svn: dat e, set to the time at which the repository was
created.

In Subversion 1.2, a repository is created with an FSFS back-end by default (see the section called
“Repository Data Stores”). The back-end can be explicitly chosen with the - - f s- t ype argument:

$ svnadmin create --fs-type fsfs /path/to/repos
$ svnadmi n create --fs-type bdb /path/to/other/repos

Q Warning

Do not create a Berkeley DB repository on a network share—it cannot exist on a remote
filesystem such as NFS, AFS, or Windows SMB. Berkeley DB requires that the underlying
filesystem implement strict POSIX locking semantics, and more importantly, the ability to
map files directly into process memory. Almost no network filesystems provide these fea
tures. If you attempt to use Berkeley DB on a network share, the results are unpredict-
able—you may see mysterious errors right away, or it may be months before you discover
that your repository database is subtly corrupted.

If you need multiple computers to access the repository, you create an FSFS repository on
the network share, not a Berkeley DB repository. Or better yet, set up area server process
(such as Apache or svnserve), store the repository on a loca filesystem which the server
can access, and make the repository available over a network. Chapter 6, Server Configur-
ation covers this process in detail.

You may have noticed that the path argument to svnadmin was just a regular filesystem path and not a
URL like the svn client program uses when referring to repositories. Both svnadmin and svnlook are
considered server-side utilities—they are used on the machine where the repository resides to examine
or modify aspects of the repository, and are in fact unable to perform tasks across a network. A common
mistake made by Subversion newcomersistrying to pass URLs (even “loca” fi | e: ones) to these two
programs.

So, after you've run the svnadmin create command, you have a shiny new Subversion repository in its
own directory. Let'stake a peek at what is actually created inside that subdirectory.

$ |Is repos
conf/ dav/ db/ format hooks/ |ocks/ README. txt

With the exception of the README. t xt and f or mat files, the repository directory is a collection of
subdirectories. Asin other areas of the Subversion design, modularity is given high regard, and hierarch-
ical organization is preferred to cluttered chaos. Here is a brief description of all of the items you see in
your new repository directory:

conf
A directory containing repository configuration files.

dav
A directory provided to Apache and mod_dav_svn for their private housekeeping data.

db
Where all of your versioned data resides. This directory is either a Berkeley DB environment (full of DB tables

73

Repository Administration

and other things), or is an FSFS environment containing revision files.

format
A file whose contents are a single integer value that dictates the version number of the repository layout.

hooks
A directory full of hook script templates (and hook scripts themselves, once you've installed some).

locks
A directory for Subversion's repository locking data, used for tracking accessors to the repository.

README.txt
A filewhich merely informsits readers that they are looking at a Subversion repository.

In general, you shouldn't tamper with your repository “by hand”. The svnadmin tool should be suffi-
cient for any changes necessary to your repository, or you can look to third-party tools (such as Berkeley
DB's tool suite) for tweaking relevant subsections of the repository. Some exceptions exist, though, and
we'll cover those here.

Hook Scripts

A hook is a program triggered by some repository event, such as the creation of a new revision or the
modification of an unversioned property. Each hook is handed enough information to tell what that
event is, what target(s) it's operating on, and the username of the person who triggered the event. De-
pending on the hook's output or return status, the hook program may continue the action, stop it, or sus-
pend it in some way.

Thehooks subdirectory is, by default, filled with templates for various repository hooks.

$ |'s repos/ hooks/

post -comi t .t npl post - unl ock. t npl pre-revprop-change.
post -1 ock. t npl pre-comit.tnpl pre-unl ock. t npl
post - revprop-change.tnpl pre-1ock.tnpl start-comit.tnpl

There is one template for each hook that the Subversion repository implements, and by examining the
contents of those template scripts, you can see what triggers each such script to run and what data is
passed to that script. Also present in many of these templates are examples of how one might use that
script, in conjunction with other Subversion-supplied programs, to perform common useful tasks. To ac-
tually install a working hook, you need only place some executable program or script into the r epos/

hooks directory which can be executed as the name (like start-commit or post-commit) of the hook.

On Unix platforms, this means supplying a script or program (which could be a shell script, a Python
program, a compiled C binary, or any number of other things) named exactly like the name of the hook.
Of course, the template files are present for more than just informational purposes—the easiest way to
install a hook on Unix platforms is to simply copy the appropriate template file to a new file that lacks
the . t mpl extension, customize the hook's contents, and ensure that the script is executable. Windows,
however, uses file extensions to determine whether or not a program is executable, so you would need to
supply a program whose basename is the name of the hook, and whose extension is one of the special
extensions recognized by Windows for executable programs, such as. exe or . comfor programs, and
. bat for batch files.

o .

_) For security reasons, the Subversion repository executes hook scripts with an empty envir-
onment—that is, no environment variables are set at all, not even $PATH or %°ATHY Be-
cause of this, alot of administrators are baffled when their hook script runs fine by hand,

74

Repository Administration

but doesn't work when run by Subversion. Be sure to explicitly set environment variables
in your hook and/or use absolute paths to programs.

There are nine hooks implemented by the Subversion repository:

start-comm t
This is run before the commit transaction is even created. It is typically used to decide if the user has commit
privileges at all. The repository passes two arguments to this program: the path to the repository, and username
which is attempting the commit. If the program returns a non-zero exit value, the commit is stopped before the
transaction is even created. If the hook program writes data to stderr, it will be marshalled back to the client.

pre-comm t
This is run when the transaction is complete, but before it is committed. Typically, this hook is used to protect
against commits that are disallowed due to content or location (for example, your site might require that all
commits to a certain branch include a ticket number from the bug tracker, or that the incoming log message is
non-empty). The repository passes two arguments to this program: the path to the repository, and the name of
the transaction being committed. If the program returns a non-zero exit value, the commit is aborted and the
transaction is removed. If the hook program writes data to stderr, it will be marshalled back to the client.

The Subversion distribution includes some access control scripts (located in thet ool s/ hook- scri pts dir-
ectory of the Subversion source tree) that can be called from pre-commit to implement fine-grained write-ac-
cess control. Another option is to use the mod_authz_svn Apache httpd module, which provides both read and
write access control on individual directories (see the section called “Per-Directory Access Control”). In a fu-
ture version of Subversion, we plan to implement access control lists (ACLS) directly in the filesystem.

post - conmi t
Thisis run after the transaction is committed, and a new revision is created. Most people use this hook to send
out descriptive emails about the commit or to make a backup of the repository. The repository passes two argu-
ments to this program: the path to the repository, and the new revision number that was created. The exit code
of the program is ignored.

The Subversion distribution includes mailer.py and commit-email.pl scripts (located in the t ool s/
hook- scri pt s/ directory of the Subversion source tree) that can be used to send email with (and/or append
to alog file) a description of a given commit. This mail contains alist of the paths that were changed, the log
message attached to the commit, the author and date of the commit, as well as a GNU diff-style display of the
changes made to the various versioned files as part of the commit.

Another useful tool provided by Subversion isthe hot-backup.py script (located in thet ool s/ backup/ dir-
ectory of the Subversion source tree). This script performs hot backups of your Subversion repository (afeature
supported by the Berkeley DB database back-end), and can be used to make a per-commit snapshot of your re-
pository for archival or emergency recovery purposes.

pre-revprop- change
Because Subversion's revision properties are not versioned, making modifications to such a property (for ex-
ample, the svn: | og commit message property) will overwrite the previous value of that property forever.
Since data can be potentially lost here, Subversion supplies this hook (and its counterpart, post -rev-
pr op- change) so that repository administrators can keep records of changes to these items using some ex-
ternal means if they so desire. As a precaution against losing unversioned property data, Subversion clients will
not be allowed to remotely modify revision properties at all unless this hook isimplemented for your repository.

This hook runs just before such a modification is made to the repository. The repository passes four arguments
to this hook: the path to the repository, the revision on which the to-be-modified property exists, the authentic-
ated username of the person making the change, and the name of the property itself.

post - r evpr op- change
As mentioned earlier, this hook is the counterpart of the pr e- r evpr op- change hook. In fact, for the sake of
paranoiathis script will not run unlessthe pr e- r evpr op- change hook exists. When both of these hooks are

75

Repository Administration

present, the post - r evpr op- change hook runsjust after arevision property has been changed, and is typic-
ally used to send an email containing the new value of the changed property. The repository passes four argu-
ments to this hook: the path to the repository, the revision on which the property exists, the authenticated user-
name of the person making the change, and the name of the property itself.

The Subversion distribution includes a propchange-email.pl script (located in thet ool s/ hook-scri pts/
directory of the Subversion source tree) that can be used to send email with (and/or append to alog file) the de-
tails of arevision property change. This mail contains the revision and name of the changed property, the user
who made the change, and the new property value.

pre-1ock
This hook runs whenever someone attemptsto lock afile. It can be used to prevent locks altogether, or to create
amore complex policy specifying exactly which users are allowed to lock particular paths. If the hook notices a
pre-existing lock, then it can also decide whether a user is allowed to “steal” the existing lock. The repository
passes three arguments to the hook: the path to the repository, the path being locked, and the user attempting to
perform the lock. If the program returns a non-zero exit value, the lock action is aborted and anything printed to
stderr is marshalled back to the client.

post - | ock
This hook runs after a path is locked. The locked path is passed to the hook's stdin, and the hook also receives
two arguments: the path to the repository, and the user who performed the lock. The hook is then free to send
email notification or record the event in any way it chooses. Because the lock aready happened, the output of
the hook isignored.

pre-unl ock

This hook runs whenever someone attempts to remove alock on afile. It can be used to create policies that spe-
cify which users are allowed to unlock particular paths. It's particularly important for determining policies about
lock breakage. If user A locks afile, is user B allowed to break the lock? What if the lock is more than a week
old? These sorts of things can be decided and enforced by the hook. The repository passes three arguments to
the hook: the path to the repository, the path being unlocked, and the user attempting to remove the lock. If the
program returns a non-zero exit value, the unlock action is aborted and anything printed to stderr is marshalled
back to the client.

post - unl ock
This hook runs after a path is unlocked. The unlocked path is passed to the hook's stdin, and the hook aso re-
ceives two arguments: the path to the repository, and the user who removed the lock. The hook is then free to
send email notification or record the event in any way it chooses. Because the lock removal already happened,
the output of the hook isignored.

° Warning
Do not attempt to modify the transaction using hook scripts. A common example of this
would be to automatically set propertiessuch assvn: eol - styl e or svn: m ne-type
during the commit. While this might seem like a good ides, it causes problems. The main
problem is that the client does not know about the change made by the hook script, and
there is no way to inform the client that it is out-of-date. This inconsistency can lead to sur-
prising and unexpected behavior.

Instead of attempting to modify the transaction, it is much better to check the transaction in
thepr e- commi t hook and reject the commit if it does not meet the desired regquirements.

Subversion will attempt to execute hooks as the same user who owns the process which is accessing the
Subversion repository. In most cases, the repository is being accessed via Apache HTTP server and
mod_dav_svn, so this user is the same user that Apache runs as. The hooks themselves will need to be
configured with OS-level permissions that allow that user to execute them. Also, this means that any file
or programs (including the Subversion repository itself) accessed directly or indirectly by the hook will
be accessed as the same user. In other words, be aert to potential permission-related problems that could

76

Repository Administration

prevent the hook from performing the tasks you've written it to perform.

Berkeley DB Configuration

A Berkeley DB environment is an encapsulation of one or more databases, log files, region files and
configuration files. The Berkeley DB environment has its own set of default configuration values for
things like the number of database locks allowed to be taken out at any given time, or the maximum size
of the journaling log files, etc. Subversion's filesystem code additionally chooses default values for some
of the Berkeley DB configuration options. However, sometimes your particular repository, with its
unique collection of data and access patterns, might require a different set of configuration option val-
ues.

The folks at Sleepycat (the producers of Berkeley DB) understand that different databases have different
requirements, and so they have provided a mechanism for overriding at runtime many of the configura-
tion values for the Berkeley DB environment. Berkeley checks for the presence of a file named
DB_CONFI Gin each environment directory, and parses the options found in that file for use with that
particular Berkeley environment.

The Berkeley configuration file for your repository is located in the db environment directory, at r e-

pos/ db/ DB_CONFI G. Subversion itself creates this file when it creates the rest of the repository. The
fileinitially contains some default options, as well as pointers to the Berkeley DB online documentation
so you can read about what those options do. Of course, you are free to add any of the supported Berke-
ley DB options to your DB_CONFI Gfile. Just be aware that while Subversion never attempts to read or
interpret the contents of the file, and makes no use of the option settings in it, you'll want to avoid any
configuration changes that may cause Berkeley DB to behave in afashion that is unexpected by the rest
of the Subversion code. Also, changes made to DB_CONFI G won't take effect until you recover the
database environment (using svnadmin recover).

Repository Maintenance

Maintaining a Subversion repository can be a daunting task, mostly due to the complexities inherent in
systems which have a database backend. Doing the task well is all about knowing the tools—what they
are, when to use them, and how to use them. This section will introduce you to the repository adminis-
tration tools provided by Subversion, and how to wield them to accomplish tasks such as repository mi-
grations, upgrades, backups and cleanups.

An Administrator's Toolkit

Subversion provides a handful of utilities useful for creating, inspecting, modifying and repairing your
repository. Let's look more closely at each of those tools. Afterward, well briefly examine some of the
utilities included in the Berkeley DB distribution that provide functionality specific to your repository's
database backend not otherwise provided by Subversion's own tools.

svnlook

svnlook is atool provided by Subversion for examining the various revisions and transactions in a re-
pository. No part of this program attempts to change the repository—it's a “read-only” tool. svnlook is
typically used by the repository hooks for reporting the changes that are about to be committed (in the
case of the pre-commit hook) or that were just committed (in the case of the post-commit hook) to the
repository. A repository administrator may use thistool for diagnostic purposes.

svnlook has a straightforward syntax:

$ svnl ook hel p
general usage: svnl ook SUBCOMWAND REPOS PATH [ARGS & OPTIONS ...]

77

Repository Administration

Not e: any subconmand which takes the '--revision' and '--transaction'
options will, if invoked w thout one of those options, act on
the repository's youngest revision.

Type "svnl ook hel p <subconmmand>" for help on a specific subconmand.

Nearly every one of svnlook's subcommands can operate on either arevision or a transaction tree, print-
ing information about the tree itself, or how it differs from the previous revision of the repository. Y ou
usethe--revisionand--transacti on optionsto specify which revision or transaction, respect-
ively, to examine. Note that while revision numbers appear as natural numbers, transaction names are al-
phanumeric strings. Keep in mind that the filesystem only allows browsing of uncommitted transactions
(transactions that have not resulted in a new revision). Most repositories will have no such transactions,
because transactions are usually either committed (which disqualifies them from viewing) or aborted
and removed.

In the absence of both the - -revi si on and - -transacti on options, svnlook will examine the
youngest (or “HEAD”) revision in the repository. So the following two commands do exactly the same
thing when 19 is the youngest revision in the repository located at / pat h/ t o/ r epos:

$ svnl ook info /path/tol/repos
$ svnlook info /path/to/repos --revision 19

The only exception to these rules about subcommands is the svnlook youngest subcommand, which
takes no options, and simply prints out the HEAD revision number.

$ svnl ook youngest /path/to/repos
19

Output from svnlook is desighed to be both human- and machine-parsable. Take as an example the out-
put of thei nf o subcommand:

$ svnl ook info /path/tol/repos

sally

2002-11-04 09:29:13 -0600 (Mon, 04 Nov 2002)
27

Added t he usual

Greek tree.

The output of thei nf o subcommand is defined as:

1. Theauthor, followed by anewline.
The date, followed by a newline.

The number of charactersin the log message, followed by a newline.

A w0

The log message itself, followed by a newline.

This output is human-readable, meaning items like the datestamp are displayed using a textual represent-
ation instead of something more obscure (such as the number of nanoseconds since the Tasty Freeze guy
drove by). But this output is also machine-parsable—because the log message can contain multiple lines
and be unbounded in length, svnlook provides the length of that message before the message itself. This

78

Repository Administration

allows scripts and other wrappers around this command to make intelligent decisions about the log mes-
sage, such as how much memory to allocate for the message, or at least how many bytes to skip in the
event that this output is not the last bit of datain the stream.

Another common use of svnlook is to actually view the contents of a revision or transaction tree. The
svnlook tree command displays the directories and files in the requested tree. If you supply the -
- show- i ds option, it will also show the filesystem node revision |Ds for each of those paths (which is
generally of more use to developers than to users).

$ svnl ook tree /path/to/repos --showids
/ <0.0.1>
A <2.0.1>
B/ <4.0.1>
| ambda <5.0. 1>
E/ <6.0.1>
al pha <7.0.1>
beta <8.0. 1>
F/ <9.0.1>
mu <3.0. 1>
C <a.0.1>
D <b.0.1>
gama <c. 0. 1>
G <d.0.1>
pi <e.O0.1>
rho <f.0.1>
tau <g.0. 1>
H <h.0.1>
chi <i.0.1>
onega <k.O0.1>
psi <j.0.1>
iota <1.0.1>

Once you've seen the layout of directories and files in your tree, you can use commands like svnlook
cat, svnlook propget, and svnlook proplist to dig into the details of those files and directories.

svnlook can perform a variety of other queries, displaying subsets of bits of information we've men-
tioned previously, reporting which paths were modified in a given revision or transaction, showing tex-
tual and property differences made to files and directories, and so on. The following is a brief descrip-
tion of the current list of subcommands accepted by svnlook, and the output of those subcommands:

aut hor
Print the tree's author.

cat
Print the contents of afilein the tree.

changed
List all files and directories that changed in the tree.

dat e
Print the tree's datestamp.

di ff
Print unified diffs of changed files.

di r s- changed
List the directories in the tree that were themselves changed, or whose file children were changed.

hi story

79

Repository Administration

Display interesting points in the history of a versioned path (places where modifications or copies occurred).

info
Print the tree's author, datestamp, 1og message character count, and og message.

| ock
If apath islocked, describe the lock attributes.

| og
Print the tree's log message.

pr opget
Print the value of a property on a path in the tree.

propli st
Print the names and values of properties set on pathsin the tree.

tree
Print the tree listing, optionally revealing the filesystem node revision | Ds associated with each path.

uui d
Print the repository's UUID— Universal Unique I Dentifier.

youngest
Print the youngest revision number.

svnadmin

The svnadmin program is the repository administrator's best friend. Besides providing the ability to cre-
ate Subversion repositories, this program allows you to perform several maintenance operations on those
repositories. The syntax of svnadmin issimilar to that of svnlook:

$ svnadnin hel p
general usage: svnadnm n SUBCOMVAND REPOCS PATH [ARGS & OPTIONS ...]
Type "svnadm n hel p <subcommand>" for help on a specific subcommand.

Avai | abl e subcommands:
create
deltify
dunp

help (?, h)

We've already mentioned svnadmin's cr eat e subcommand (see the section called “Repository Cre-
ation and Configuration”). Most of the others we will cover in more detail later in this chapter. For now,
let's just take a quick glance at what each of the available subcommands offers.

create
Create a new Subversion repository.

deltify
Run over a specified revision range, performing predecessor deltification on the paths changed in those revi-
sions. If no revisions are specified, this command will simply deltify the HEAD revision.

dunp
Dump the contents of the repository, bounded by a given set of revisions, using a portable dump format.

80

Repository Administration

hot copy
Make a hot copy of arepository. Y ou can run this command at any time and make a safe copy of the repository,
regardlessif other processes are using the repository.

list-dbl ogs
(Berkeley DB repositories only.) List the paths of Berkeley DB log files associated with the repository. Thislist
includes all log files—those till in use by Subversion, as well as those no longer in use.

list-unused-dbl ogs
(Berkeley DB repositories only.) List the paths of Berkeley DB log files associated with, but no longer used by,
the repository. You may safely remove these log files from the repository layout, possibly archiving them for
use in the event that you ever need to perform a catastrophic recovery of the repository.

| oad
Load a set of revisions into a repository from a stream of data that uses the same portable dump format gener-
ated by the dunp subcommand.

I sl ocks
List and describe any locks that exist in the repository.

| st xns
List the names of uncommitted Subversion transactions that currently exist in the repository.

recover
Perform recovery steps on arepository that isin need of such, generally after afatal error has occurred that pre-
vented a process from cleanly shutting down its communication with the repository.

rm ocks
Unconditionally remove locks from listed paths.

rmt xns
Cleanly remove Subversion transactions from the repository (conveniently fed by output fromthel st xns sub-
command).

set | og
Replace the current value of the svn: | og (commit log message) property on a given revision in the repository
with anew value.

verify
Verify the contents of the repository. This includes, among other things, checksum comparisons of the ver-
sioned data stored in the repository.

svndumpfilter

Since Subversion stores everything in an opagque database system, attempting manual tweaks is unwise,
if not quite difficult. And once data has been stored in your repository, Subversion generally doesn't
provide an easy way to remove that data. 3 But inevitably, there will be times when you would like to
manipulate the history of your repository. Y ou might need to strip out all instances of afile that was ac-
cidentally added to the repository (and shouldn't be there for whatever reason). Or, perhaps you have
multiple projects sharing a single repository, and you decide to split them up into their own repositories.
To accomplish tasks like this, administrators need a more manageable and malleable representation of
the datain their repositories—the Subversion repository dump format.

The Subversion repository dump format is a human-readable representation of the changes that you've
made to your versioned data over time. You use the svnadmin dump command to generate the dump

3That, by the way, isafeature, not abug.

81

Repository Administration

data, and svhadmin load to populate a new repository with it (see the section called “Migrating a Re-
pository”). The great thing about the human-readability aspect of the dump format is that, if you aren't
careless about it, you can manualy inspect and modify it. Of course, the downside is that if you have
two years worth of repository activity encapsulated in what is likely to be a very large dump file, it
could take you along, long time to manually inspect and modify it.

While it won't be the most commonly used tool at the administrator's disposal, svndumpfilter provides
avery particular brand of useful functionality—the ability to quickly and easily modify that dump data
by acting as a path-based filter. Simply give it either alist of paths you wish to keep, or alist of paths
you wish to not keep, then pipe your repository dump data through this filter. The result will be a modi-
fied stream of dump data that contains only the versioned paths you (explicitly or implicitly) requested.

The syntax of svndumpfilter isasfollows:

$ svndunpfilter help
general usage: svndunpfilter SUBCOMVAND [ARGS & OPTIONS ...]
Type "svndunpfilter hel p <subcommand>" for help on a specific subcomrand.

Avai | abl e subcommands:
excl ude
i ncl ude
help (?, h)

There are only two interesting subcommands. They allow you to make the choice between explicit or
implicit inclusion of pathsin the stream:

excl ude
Filter out a set of paths from the dump data stream.

i ncl ude
Allow only the requested set of paths to pass through the dump data stream.

Let'slook arealistic example of how you might use this program. We discuss el sewhere (see the section
called “Choosing a Repository Layout”) the process of deciding how to choose a layout for the datain
your repositories—using one repository per project or combining them, arranging stuff within your re-
pository, and so on. But sometimes after new revisions start flying in, you rethink your layout and would
like to make some changes. A common change is the decision to move multiple projects which are shar-
ing asingle repository into separate repositories for each project.

Our imaginary repository contains three projects: cal ¢, cal endar, and spr eadsheet . They have
been living side-by-side in alayout like this:

cal ¢/
t runk/
br anches/
t ags/

cal endar/
t runk/
br anches/
t ags/

spr eadsheet/
trunk/
br anches/
t ags/

82

Repository Administration

To get these three projects into their own repositories, we first dump the whole repository:

svnadm n dunp /path/to/repos > repos-dunmpfile
Dunped revision 0.
Dunped revision 1.
Dunped revi sion 2.
Dunped revi sion 3.

* % X X Lp

o

Next, run that dump file through the filter, each time including only one of our top-level directories, and
resulting in three new dump files:

$ cat repos-dunpfile | svndunpfilter include calc > calc-dunpfile
$ cat repos-dunpfile | svndunmpfilter include cal endar > cal -dunpfile
$ cat repos-dunpfile | svndunpfilter include spreadsheet > ss-dunpfile

$

At this point, you have to make a decision. Each of your dump files will create a valid repository, but
will preserve the paths exactly as they were in the original repository. This means that even though you
would have arepository solely for your cal ¢ project, that repository would still have a top-level direct-
ory named cal c. If you want your t r unk, t ags, and br anches directories to live in the root of
your repository, you might wish to edit your dump files, tweaking the Node- pat h and Node-
copyf r om pat h headers to no longer have that first cal ¢/ path component. Also, you'll want to re-
move the section of dump data that createsthe cal ¢ directory. It will look something like:

Node- pat h: cal c
Node- acti on: add
Node- ki nd: dir
Content-length: O

° Warning
If you do plan on manually editing the dump file to remove a top-level directory, make
sure that your editor is not set to automatically convert end-lines to the native format (e.g.
\r\n to \n) as the content will then not agree with the metadata and this will render the
dump file useless.

All that remains now is to create your three new repositories, and load each dump file into the right re-
pository:

$ svnadm n create calc; svnadmin |oad calc < cal c-dunmpfile
<<< Started new transaction, based on original revision 1
* adding path : Mkefile ... done.
* adding path : button.c ... done.

$ svnadnin create cal endar; svnadmin |oad cal endar < cal -dunpfile
<<< Started new transaction, based on original revision 1
* adding path : Mkefile ... done.

83

Repository Administration

* adding path : cal.c ... done.

$ svnadm n create spreadsheet; svnadm n | oad spreadsheet < ss-dumpfile
<<< Started new transaction, based on original revision 1

* adding path : Makefile ... done.

* adding path : ss.c ... done.

Both of svndumpfilter's subcommands accept options for deciding how to deal with “empty” revisions.
If agiven revision contained only changes to paths that were filtered out, that now-empty revision could
be considered uninteresting or even unwanted. So to give the user control over what to do with those re-
visions, svndumpfilter provides the following command-line options:

--drop-enpty-revs
Do not generate empty revisions at all—just omit them.

- -renumnber-revs
If empty revisions are dropped (using the - - dr op- enpt y- r evs option), change the revision numbers of the
remaining revisions so that there are no gaps in the numeric sequence.

--preserve-revprops

If empty revisions are not dropped, preserve the revision properties (log message, author, date, custom proper-
ties, etc.) for those empty revisions. Otherwise, empty revisions will only contain the origina datestamp, and a
generated log message that indicates that this revision was emptied by svndumpfilter.

While svndumpfilter can be very useful, and a huge timesaver, there are unfortunately a couple of
gotchas. Firgt, this utility is overly sensitive to path semantics. Pay attention to whether paths in your
dump file are specified with or without leading slashes. You'll want to look at the Node- pat h and
Node- copyf rom pat h headers.

Node- pat h: spreadsheet/ Makefile

If the paths have leading slashes, you should include leading slashes in the paths you pass to svndump-
filter include and svndumpfilter exclude (and if they don't, you shouldn't). Further, if your dump file
has an inconsistent usage of leading slashes for some reason, 4 you should probably normalize those
paths so they all have, or lack, leading slashes.

Also, copied paths can give you some trouble. Subversion supports copy operations in the repository,
where a new path is created by copying some already existing path. It is possible that at some point in
the lifetime of your repository, you might have copied a file or directory from some location that svn-
dumpfilter is excluding, to alocation that it isincluding. In order to make the dump data self-sufficient,
svndumpfilter needsto still show the addition of the new path—including the contents of any files cre-
ated by the copy—and not represent that addition as a copy from a source that won't exist in your
filtered dump data stream. But because the Subversion repository dump format only shows what was
changed in each revision, the contents of the copy source might not be readily available. If you suspect
that you have any copies of this sort in your repository, you might want to rethink your set of included/
excluded paths.

Berkeley DB Utilities

*While svnadmin dump has a consistent leading slash policy—to not include them—other programs which generate dump data might not be so
consistent.

84

Repository Administration

If you're using a Berkeley DB repository, then al of your versioned filesystem's structure and data live
in a set of database tables within the db subdirectory of your repository. This subdirectory is a regular
Berkeley DB environment directory, and can therefore be used in conjunction with any of the Berkeley
database tools (you can see the documentation for these tools at Sleepycat's website, ht-
tp://www.sleepycat.con).

For day-to-day Subversion use, these tools are unnecessary. Most of the functionality typically needed
for Subversion repositories has been duplicated in the svnadmin tool. For example, svnadmin list-
unused-dblogs and svnadmin list-dblogs perform a subset of what is provided by the Berkeley
db_archive command, and svnadmin recover reflects the common use cases of the db_recover utility.

There are till afew Berkeley DB utilities that you might find useful. The db_dump and db_load pro-
grams write and read, respectively, a custom file format which describes the keys and values in a Berke-
ley DB database. Since Berkeley databases are not portable across machine architectures, thisformat isa
useful way to transfer those databases from machine to machine, irrespective of architecture or operating
system. Also, the db_stat utility can provide useful information about the status of your Berkeley DB
environment, including detailed statistics about the locking and storage subsystems.

Repository Cleanup

Your Subversion repository will generally require very little attention once it is configured to your lik-
ing. However, there are times when some manual assistance from an administrator might be in order.
The svnadmin utility provides some helpful functionality to assist you in performing such tasks as:

» modifying commit log messages,
» removing dead transactions,
» recovering “wedged” repositories, and

e migrating repository contents to a different repository.

Perhaps the most commonly used of svnadmin's subcommandsisset | og. When atransaction is com-
mitted to the repository and promoted to arevision, the descriptive log message associated with that new
revision (and provided by the user) is stored as an unversioned property attached to the revision itself. In
other words, the repository remembers only the latest value of the property, and discards previous ones.

Sometimes a user will have an error in her log message (a misspelling or some misinformation, per-
haps). If the repository is configured (using the pre-revprop-change and post-rev-

pr op- change hooks; see the section called “Hook Scripts’) to accept changes to this log message
after the commit is finished, then the user can “fix” her log message remotely using the svn program's
pr opset command (see Chapter 9, Subversion Complete Reference). However, because of the poten-
tial to lose information forever, Subversion repositories are not, by default, configured to allow changes
to unversioned properties—except by an administrator.

If alog message needs to be changed by an administrator, this can be done using svnadmin setlog. This
command changes the log message (the svn: | og property) on a given revision of arepository, reading
the new value from a provided file.

$ echo "Here is the new, correct |og nessage" > new og.txt
$ svnadm n setlog nyrepos new og.txt -r 388

The svnadmin setlog command alone is still bound by the same protections against modifying unver-
sioned properties as a remote client is—the pre- and post -revprop- change hooks are still

85

http://www.sleepycat.com/
http://www.sleepycat.com/

Repository Administration

triggered, and therefore must be setup to accept changes of this nature. But an administrator can get
around these protections by passing the - - bypass- hooks option to the svnadmin setlog command.

° Warning
Remember, though, that by bypassing the hooks, you are likely avoiding such things as
email notifications of property changes, backup systems which track unversioned property
changes, and so on. In other words, be very careful about what you are changing, and how

you changeit.

Another common use of svnadmin is to query the repository for outstanding—possibly
dead—Subversion transactions. In the event that a commit should fail, the transaction is usually cleaned
up. That is, the transaction itself is removed from the repository, and any data associated with (and only
with) that transaction is removed as well. Occasionally, though, a failure occurs in such a way that the
cleanup of the transaction never happens. This could happen for several reasons. perhaps the client oper-
ation was inelegantly terminated by the user, or a network failure might have occurred in the middle of
an operation, etc. Regardless of the reason, dead transactions can happen. They don't do any real harm,
other than consuming a small bit of disk space. A fastidious administrator may nonetheless want to re-
move them.

You can use svnadmin's| st xns command to list the names of the currently outstanding transactions.

$ svnadm n | stxns myrepos
19

3al

a45

$

Each item in the resultant output can then be used with svnlook (and its- -t r ansact i on option) to
determine who created the transaction, when it was created, what types of changes were made in the
transaction—in other words, whether or not the transaction is a safe candidate for removal! If so, the
transaction's name can be passed to svnadmin rmtxns, which will perform the cleanup of the transac-
tion. In fact, ther mt xns subcommand can take itsinput directly from the output of | st xns!

$ svnadm n rntxns nyrepos ~svhadmin | stxns myrepos’
$

If you use these two subcommands like this, you should consider making your repository temporarily in-
accessible to clients. That way, no one can begin a legitimate transaction before you start your cleanup.
The following is alittle bit of shell-scripting that can quickly generate information about each outstand-
ing transaction in your repository:

Example 5.1. txn-info.sh (Reporting Outstanding Transactions)

#!/ bi n/ sh

Cenerate informational output for all outstanding transactions in
a Subversion repository.

REPOS="${ 1} "

if ["x$REPCS" = x] ; then
echo "usage: $0 REPCS_PATH'
exit

86

Repository Administration

fi
for TXN in “svnadnin |stxns ${REPCS} " ; do

echo "---[Transaction ${TXN} J-------mmmmmmmmm oo -
svnl ook info "${REPOS}" --transaction "${TXN}"
done

Y ou can run the previous script using /path/to/txn-info.sh /path/to/r epos. The output is basically a con-
catenation of several chunks of svnlook info output (see the section called “svnlook™), and will look
something like:

$ txn-info.sh myrepos
---[Transaction 19 J-----------------““--““- oo

sally

2001-09-04 11:57:19 -0500 (Tue, 04 Sep 2001)

0

---[Transaction 3@l J----------mmmm oo
harry

2001- 09- 10 16:50:30 -0500 (Mon, 10 Sep 2001)

39

Trying to commit over a faulty network.

---] Transaction adb J---------mmmm oo
sally

2001-09-12 11:09: 28 -0500 (Wed, 12 Sep 2001)

0

$

A long-abandoned transaction usually represents some sort of failed or interrupted commit. A transac-
tion's datestamp can provide interesting information—for example, how likely isit that an operation be-
gun nine months ago is till active?

In short, transaction cleanup decisions need not be made unwisely. Various sources of informa-
tion—including Apache's error and access logs, the logs of successful Subversion commits, and so
on—can be employed in the decision-making process. Finally, an administrator can often simply com-
municate with a seemingly dead transaction's owner (via email, for example) to verify that the transac-
tionis, in fact, in azombie state.

Managing Disk Space

While the cost of storage has dropped incredibly in the past few years, disk usage is till avalid concern
for administrators seeking to version large amounts of data. Every additional byte consumed by the live
repository is a byte that needs to be backed up offsite, perhaps multiple times as part of rotating backup
schedules. If using a Berkeley DB repository, the primary storage mechanism is a complex database sys-
tem, it is useful to know what pieces of data need to remain on the live site, which need to be backed up,
and which can be safely removed. This section is specific to Berkeley DB; FSFS repositories have no
extradata to be cleaned up or reclaimed.

Until recently, the largest offender of disk space usage with respect to Subversion repositories was the
log files to which Berkeley DB performs its pre-writes before modifying the actual database files. These
files capture al the actions taken along the route of changing the database from one state to anoth-
er—while the database files reflect at any given time some state, the log files contain al the many
changes along the way between states. As such, they can start to accumulate quite rapidly.

Fortunately, beginning with the 4.2 release of Berkeley DB, the database environment has the ability to
remove its own unused log files without any external procedures. Any repositories created using an svn-
admin which is compiled against Berkeley DB version 4.2 or greater will be configured for this auto-

87

Repository Administration

matic log file removal. If you don't want this feature enabled, smply pass the - - bdb- | og- keep op-
tion to the svnadmin create command. If you forget to do this, or change your mind at a later time,
simple edit the DB_CONFI G file found in your repository's db directory, comment out the line which
containstheset _fl ags DB _LOG AUTOREMOVE directive, and then run svnadmin recover on your
repository to force the configuration changes to take effect. See the section called “Berkeley DB Config-
uration” for more information about database configuration.

Without some sort of automatic log file removal in place, log files will accumulate as you use your re-
pository. Thisis actually somewhat of afeature of the database system—you should be able to recreate
your entire database using nothing but the log files, so these files can be useful for catastrophic database
recovery. But typically, you'll want to archive the log files that are no longer in use by Berkeley DB, and
then remove them from disk to conserve space. Use the svnadmin list-unused-dblogs command to list
the unused log files:

$ svnadm n |ist-unused-dbl ogs /path/to/repos

/ pat h/t o/ repos/| og. 0000000031

/ pat h/t o/ repos/| og. 0000000032

/ path/to/repos/| og. 0000000033

$ svnadm n |ist-unused-dbl ogs /path/to/repos | xargs rm
di sk space recl ai med!

To keep the size of the repository as small as possible, Subversion uses deltification (or, “deltified stor-
age”) within the repository itself. Deltification involves encoding the representation of a chunk of data
as acollection of differences against some other chunk of data. If the two pieces of data are very similar,
this ddltification results in storage savings for the deltified chunk—rather than taking up space equal to
the size of the original data, it only takes up enough space to say, “I look just like this other piece of data
over here, except for the following couple of changes’. Specifically, each time a new version of afileis
committed to the repository, Subversion encodes the previous version (actually, several previous ver-
sions) as a delta against the new version. The result is that most of the repository data that tends to be
sizable—namely, the contents of versioned files—is stored at a much smaller size than the original
“fulltext” representation of that data.

Note

<> Because all of the Subversion repository data that is subject to deltification is stored in a
single Berkeley DB database file, reducing the size of the stored values will not necessarily
reduce the size of the database file itself. Berkeley DB will, however, keep internal records
of unused areas of the database file, and use those areas first before growing the size of the
database file. So while deltification doesn't produce immediate space savings, it can
drastically slow future growth of the database.

Repository Recovery

As mentioned in the section called “Berkeley DB”, a Berkeley DB repository can sometimes be l€eft in
frozen state if not closed properly. When this happens, an administrator needs to rewind the database
back into a consistent state.

In order to protect the data in your repository, Berkeley DB uses a locking mechanism. This mechanism
ensures that portions of the database are not simultaneously modified by multiple database accessors,
and that each process sees the data in the correct state when that data is being read from the database.
When a process needs to change something in the database, it first checks for the existence of alock on
the target data. If the data is not locked, the process locks the data, makes the change it wants to make,
and then unlocks the data. Other processes are forced to wait until that lock is removed before they are
permitted to continue accessing that section of the database. (This has nothing to do with the locks that
you, as a user, can apply to versioned files within the repository; see Three meanings of “lock” for more

88

Repository Administration

information.)

In the course of using your Subversion repository, fatal errors (such as running out of disk space or
available memory) or interruptions can prevent a process from having the chance to remove the locks it
has placed in the database. The result is that the back-end database system gets “wedged”. When this
happens, any attempts to access the repository hang indefinitely (since each new accessor is waiting for
alock to go away—which isn't going to happen).

First, if this happens to your repository, don't panic. The Berkeley DB filesystem takes advantage of
database transactions and checkpoints and pre-write journaling to ensure that only the most catastrophic
of events® can permanently destroy a database environment. A sufficiently paranoid repository adminis-
trator will be making off-site backups of the repository data in some fashion, but don't call your system
administrator to restore a backup tape just yet.

Secondly, use the following recipe to attempt to “ unwedge” your repository:

1. Make sure that there are no processes accessing (or attempting to access) the repository. For net-
worked repositories, this means shutting down the Apache HTTP Server, too.

2. Become the user who owns and manages the repository. This is important, as recovering a reposit-
ory while running as the wrong user can tweak the permissions of the repository's files in such a
way that your repository will still be inaccessible even after it is* unwedged”.

3. Runthe command svhadmin recover /path/to/repos. Y ou should see output like this:

Repository | ock acquired.
Pl ease wait; recovering the repository may take sone tine...

Recovery conpl et ed.
The | atest repos revision is 19.

This command may take many minutes to complete.

4, Restart the Subversion server.

This procedure fixes almost every case of repository lock-up. Make sure that you run this command as
the user that owns and manages the database, not just as r oot . Part of the recovery process might in-
volve recreating from scratch various database files (shared memory regions, for example). Recovering
asr oot will create those files such that they are owned by r oot , which means that even after you re-
store connectivity to your repository, regular users will be unable to accessit.

If the previous procedure, for some reason, does not successfully unwedge your repository, you should
do two things. First, move your broken repository out of the way and restore your latest backup of it.
Then, send an email to the Subversion user list (at <user s@ubversi on. tigris. or g>) describ-
ing your problem in detail. Data integrity is an extremely high priority to the Subversion developers.

Migrating a Repository

A Subversion filesystem has its data spread throughout various database tables in a fashion generally un-
derstood by (and of interest to) only the Subversion developers themselves. However, circumstances
may arise that call for all, or some subset, of that data to be collected into a single, portable, flat file
format. Subversion provides such a mechanism, implemented in a pair of svnadmin subcommands:
dunp and | oad.

SE.g.: hard drive + huge electromagnet = disaster.

89

Repository Administration

The most common reason to dump and load a Subversion repository is due to changes in Subversion it-
self. As Subversion matures, there are times when certain changes made to the back-end database
schema cause Subversion to be incompatible with previous versions of the repository. Other reasons for
dumping and loading might be to migrate a Berkeley DB repository to anew OS or CPU architecture, or
to switch between Berkeley DB and FSFS back-ends. The recommended course of action is relatively
simple:

1. Using your current version of svnadmin, dump your repositories to dump files.
2. Upgrade to the new version of Subversion.

3. Move your old repositories out of the way, and create new empty ones in their place using your
new svhadmin.

4. Again using your new svnadmin, load your dump files into their respective, just-created repositor-
ies.

5. Be sure to copy any customizations from your old repositories to the new ones, including
DB_CONFI Gfiles and hook scripts. You'll want to pay attention to the release notes for the new re-
lease of Subversion to see if any changes since your last upgrade affect those hooks or configura-
tion options.

6. If the migration process made your repository accessible at a different URL (e.g. moved to a differ-
ent computer, or is being accessed via a different schema), then you'll probably want to tell your
usersto run svn switch --relocate on their existing working copies. See svn switch.

svnadmin dump will output a range of repository revisions that are formatted using Subversion's cus-
tom filesystem dump format. The dump format is printed to the standard output stream, while informat-
ive messages are printed to the standard error stream. This allows you to redirect the output stream to a
file while watching the status output in your terminal window. For example:

$ svnl ook youngest nyrepos

26

svnadmi n dunp nyrepos > dunpfile
Dunped revision O.

Dunped revision 1.

Dunped revision 2.

* X X LH

*

Dunped revision 25.
* Dunped revision 26.

At the end of the process, you will have asingle file (dunpf i | e in the previous example) that contains
all the data stored in your repository in the requested range of revisions. Note that svnadmin dump is
reading revision trees from the repository just like any other “reader” process would (svn checkout, for
example). So it's safe to run this command at any time.

The other subcommand in the pair, svnadmin load, parses the standard input stream as a Subversion re-
pository dump file, and effectively replays those dumped revisions into the target repository for that op-
eration. It also gives informative feedback, this time using the standard output stream:

$ svnadm n | oad new epos < dunpfile

<<< Started new txn, based on original revision 1
* adding path : A ... done.
* adding path : A/B ... done.

90

Repository Administration

------- Conmitted newrev 1 (loaded fromoriginal rev 1) >>>

<<< Started new txn, based on original revision 2
* editing path : A'nmu ... done.
* editing path : ADGrho ... done.

——————— Conmitted new rev 2 (loaded fromoriginal rev 2) >>>

<<< Started new txn, based on original revision 25
* editing path : A/D/gamma ... done.

------- Committed new rev 25 (loaded fromoriginal rev 25) >>>

<<< Started new txn, based on original revision 26
* adding path : A/Z/zeta ... done.
* editing path : A'nu ... done.

——————— Conmitted new rev 26 (loaded fromoriginal rev 26) >>>

The result of aload is new revisions added to a repository—the same thing you get by making commits
against that repository from a regular Subversion client. And just as in a commit, you can use hook
scripts to perform actions before and after each of the commits made during aload process. By passing
the- - use- pre-conmit - hook and - - use- post - commi t - hook options to svnadmin load, you
can instruct Subversion to execute the pre-commit and post-commit hook scripts, respectively, for each
loaded revision. Y ou might use these, for example, to ensure that loaded revisions pass through the same
validation steps that regular commits pass through. Of course, you should use these options with
care—if your post-commit hook sends emailsto amailing list for each new commit, you might not want
to spew hundreds or thousands of commit emailsin rapid succession at that list for each of the loaded re-
visions! Y ou can read more about the use of hook scriptsin the section called “Hook Scripts’.

Note that because svnadmin uses standard input and output streams for the repository dump and load
process, people who are feeling especially saucy can try things like this (perhaps even using different
versions of svnadmin on each side of the pipe):

$ svnadnin create new epos .
$ svnadmi n dunp nyrepos | svnadmi n | oad new epos

By default, the dump file will be quite large—much larger than the repository itself. That's because
every version of every fileis expressed as afull text in the dump file. Thisis the fastest and simplest be-
havior, and nice if you're piping the dump data directly into some other process (such as a compression
program, filtering program, or into aloading process). But if you're creating a dump file for longer-term
storage, you'll likely want to save disk space by using the - - del t as switch. With this option, success-
ive revisions of fileswill be output as compressed, binary differences—just asfile revisions are stored in
arepository. This option is slower, but results in a dump file much closer in size to the original reposit-
ory.

We mentioned previously that svnadmin dump outputs arange of revisions. Usethe- - r evi si on op-
tion to specify a single revision to dump, or a range of revisions. If you omit this option, all the existing
repository revisions will be dumped.

$ svnadmi n dunp nyrepos --revision 23 > rev-23.dunpfile
$ svnadm n dunp nyrepos --revision 100: 200 > revs-100-200. dunmpfile

91

Repository Administration

As Subversion dumps each new revision, it outputs only enough information to allow a future loader to
re-create that revision based on the previous one. In other words, for any given revision in the dump file,
only the items that were changed in that revision will appear in the dump. The only exception to this rule
isthefirst revision that is dumped with the current synadmin dump command.

By default, Subversion will not express the first dumped revision as merely differences to be applied to
the previous revision. For one thing, there is no previous revision in the dump file! And secondly, Sub-
version cannot know the state of the repository into which the dump data will be loaded (if it ever, in
fact, occurs). To ensure that the output of each execution of svnadmin dump is self-sufficient, the first
dumped revision is by default a full representation of every directory, file, and property in that revision
of the repository.

However, you can change this default behavior. If you add the - - i ncr enent al option when you
dump your repository, svnadmin will compare the first dumped revision against the previous revision in
the repository, the same way it treats every other revision that gets dumped. It will then output the first
revision exactly as it does the rest of the revisions in the dump range—mentioning only the changes that
occurred in that revision. The benefit of thisis that you can create several small dump files that can be
loaded in succession, instead of one large one, like so:

$ svnadm n dunp nyrepos --revision 0:1000 > dunpfilel
$ svnadm n dunp nyrepos --revision 1001: 2000 --1ncremental > dunpfile2
$ svnadm n dunp nyrepos --revision 2001: 3000 --incremental > dunpfile3

These dump files could be loaded into a new repository with the following command sequence:

$ svnadm n | oad new epos < dunpfilel
$ svnadm n | oad new epos < dunpfile2
$ svnadmi n | oad new epos < dunpfile3

Another neat trick you can perform with this - - i ncr enent al option involves appending to an exist-
ing dump file a new range of dumped revisions. For example, you might have a post - conmi t hook
that simply appends the repository dump of the single revision that triggered the hook. Or you might
have a script that runs nightly to append dump file data for all the revisions that were added to the repos-
itory since the last time the script ran. Used like this, svnadmin’'s dunp and | oad commands can be a
valuable means by which to backup changes to your repository over time in case of a system crash or
some other catastrophic event.

The dump format can also be used to merge the contents of several different repositoriesinto asingle re-
pository. By using the - - par ent - di r option of svnadmin load, you can specify a new virtual root
directory for the load process. That means if you have dump files for three repositories, say cal c-
dunpfile,cal -dunpfil e,andss-dunpfil e, you can first create a new repository to hold them
al:

$ svnadm n create /path/to/projects

Then, make new directories in the repository which will encapsulate the contents of each of the three
previous repositories:

$ svn nkdir -m"Initial project roots" \
file://lpath/tolprojects/calc \
file://lpath/tolprojects/cal endar \
file:///path/tolprojects/spreadsheet

92

Repository Administration

Committed revision 1.

Lastly, load the individual dump files into their respective locations in the new repository:

$ svnadmn |l oad /path/to/projects --parent-dir calc < cal c-dunpfile
$ svnadnin | oad /path/to/projects --parent-dir cal endar < cal -dunpfile
$ svnadmin | oad /path/to/projects --parent-dir spreadsheet < ss-dunmpfile

WEe'll mention one final way to use the Subversion repository dump format—conversion from a different
storage mechanism or version control system altogether. Because the dump file format is, for the most
part, human-readable, 6 it should be rel atively easy to describe generic sets of changes—each of which
should be treated as a new revision—using this file format. In fact, the cvs2svn utility (see the section
called “Converting a Repository from CV'S to Subversion”) uses the dump format to represent the con-
tents of a CV S repository so that those contents can be copied into a Subversion repository.

Repository Backup

Despite numerous advances in technology since the birth of the modern computer, one thing unfortu-
nately rings true with crystalline clarity—sometimes, things go very, very awry. Power outages, network
connectivity dropouts, corrupt RAM and crashed hard drives are but a taste of the evil that Fate is poised
to unleash on even the most conscientious administrator. And so we arrive at a very important top-
ic—how to make backup copies of your repository data.

There are generally two types of backup methods available for Subversion repository administrat-
ors—incremental and full. We discussed in an earlier section of this chapter how to use svnadmin
dump --incremental to perform an incremental backup (see the section called “Migrating a
Repository”). Essentially, the idea is to only backup at a given time the changes to the repository since
the last time you made a backup.

A full backup of the repository is quite literally a duplication of the entire repository directory (which in-
cludes either Berkeley database or FSFS environment). Now, unless you temporarily disable all other
access to your repository, simply doing a recursive directory copy runs the risk of generating a faulty
backup, since someone might be currently writing to the database.

In the case of Berkeley DB, Sleepycat documents describe a certain order in which database files can be
copied that will guarantee a valid backup copy. And a similar ordering exists for FSFS data. Better till,
you don't have to implement these algorithms yourself, because the Subversion development team has
aready done so. The hot-backup.py script is found in thet ool s/ backup/ directory of the Subver-
sion source distribution. Given a repository path and a backup location, hot-backup.py—which isreally
just a more intelligent wrapper around the svnadmin hotcopy command—will perform the necessary
steps for backing up your live repository—without requiring that you bar public repository access at
all—and then will clean out the dead Berkeley log files from your live repository.

Even if you also have an incremental backup, you might want to run this program on aregular basis. For
example, you might consider adding hot-backup.py to a program scheduler (such as cron on Unix sys-
tems). Or, if you prefer fine-grained backup solutions, you could have your post-commit hook script call
hot-backup.py (see the section called “Hook Scripts”), which will then cause a new backup of your re-
pository to occur with every new revision created. Simply add the following to the hooks/
post - commi t script in your live repository directory:

5The Subversion repository dump format resembles an RFC-822 format, the same type of format used for most email.

93

Repository Administration

(cd /path/to/ hook/scripts; ./hot-backup.py ${REPCS} /path/to/backups &)

The resulting backup is a fully functional Subversion repository, able to be dropped in as a replacement
for your live repository should something go horribly wrong.

There are benefits to both types of backup methods. The easiest is by far the full backup, which will al-
ways result in a perfect working replica of your repository. This again means that should something bad
happen to your live repository, you can restore from the backup with a simple recursive directory copy.
Unfortunately, if you are maintaining multiple backups of your repository, these full copies will each eat
up just as much disk space as your live repository.

Incremental backups using the repository dump format are excellent to have on hand if the database
schema changes between successive versions of Subversion itself. Since a complete repository dump
and load are generally required to upgrade your repository to the new schema, it's very convenient to
already have half of that process (the dump part) finished. Unfortunately, the creation of—and restora-
tion from—incremental backups takes longer, as each commit is effectively replayed into either the
dump file or the repository.

In either backup scenario, repository administrators need to be aware of how modifications to unver-
sioned revision properties affect their backups. Since these changes do not themselves generate new re-
visions, they will not trigger post-commit hooks, and may not even trigger the pre-revprop-change and
post-revprop-change hooks. " And since you can change revision properties without respect to chronolo-
gical order—you can change any revision's properties at any time—an incremental backup of the latest
few revisions might not catch a property modification to a revision that was included as part of a previ-
ous backup.

Generally speaking, only the truly paranoid would need to backup their entire repository, say, every time
a commit occurred. However, assuming that a given repository has some other redundancy mechanism
in place with relatively fine granularity (like per-commit emails), a hot backup of the database might be
something that a repository administrator would want to include as part of a system-wide nightly
backup. For most repositories, archived commit emails alone provide sufficient redundancy as restora-
tion sources, at least for the most recent few commits. But it's your data—protect it as much as you'd
like.

Often, the best approach to repository backups is a diversified one. You can leverage combinations of
full and incremental backups, plus archives of commit emails. The Subversion developers, for example,
back up the Subversion source code repository after every new revision is created, and keep an archive
of al the commit and property change notification emails. Y our solution might be similar, but should be
catered to your needs and that delicate balance of convenience with paranoia. And while all of this might
not save your hardware from the iron fist of Fate, 8t should certai nly help you recover from those trying
times.

Adding Projects

Once your repository is created and configured, all that remainsisto begin using it. If you have a collec-
tion of existing data that is ready to be placed under version control, you will more than likely want to
use the svn client program'si nport subcommand to accomplish that. Before doing this, though, you
should carefully consider your long-term plans for the repository. In this section, we will offer some ad-
vice on how to plan the layout of your repository, and how to get your data arranged in that layout.

’svnadmin setlog can be called in away that bypasses the hook interface altogether.
8y ou know—the collective term for all of her “fickle fingers’.

94

Repository Administration

Choosing a Repository Layout

While Subversion allows you to move around versioned files and directories without any loss of inform-
ation, doing so can still disrupt the workflow of those who access the repository often and come to ex-
pect things to be at certain locations. Try to peer into the future a bit; plan ahead before placing your
data under version control. By “laying out” the contents of your repositories in an effective manner the
first time, you can prevent aload of future headaches.

There are a few things to consider when setting up Subversion repositories. Let's assume that as reposit-
ory administrator, you will be responsible for supporting the version control system for several projects.
The first decision is whether to use a single repository for multiple projects, or to give each project its
own repository, or some compromise of these two.

There are benefits to using a single repository for multiple projects, most obviously the lack of duplic-
ated maintenance. A single repository means that there is one set of hook scripts, one thing to routinely
backup, one thing to dump and load if Subversion releases an incompatible new version, and so on.
Also, you can move data between projects easily, and without losing any historical versioning informa-
tion.

The downside of using a single repository is that different projects may have different commit mailing
lists or different authentication and authorization requirements. Also, remember that Subversion uses re-
pository-global revision numbers. Some folks don't like the fact that even though no changes have been
made to their project lately, the youngest revision number for the repository keeps climbing because oth-
er projects are actively adding new revisions.

A middle-ground approach can be taken, too. For example, projects can be grouped by how well they re-
late to each other. Y ou might have a few repositories with a handful of projectsin each repository. That
way, projects that are likely to want to share data can do so easily, and as new revisions are added to the
repository, at least the developers know that those new revisions are at least remotely related to every-
one who uses that repository.

After deciding how to organize your projects with respect to repositories, you'll probably want to think
about directory hierarchies in the repositories themselves. Because Subversion uses regular directory
copies for branching and tagging (see Chapter 4, Branching and Merging), the Subversion community
recommends that you choose a repository location for each project root—the “top-most” directory
which contains data related to that project—and then create three subdirectories beneath that root:
t r unk, meaning the directory under which the main project development occurs; br anches, which is
adirectory in which to create various named branches of the main development line; t ags, whichisa
directory of branches that are created, and perhaps destroyed, but never changed. o

For example, your repository might look like:

cal ¢/

t runk/

t ags/

br anches/
cal endar/

t runk/

t ags/

br anches/
spreadsheet/

t runk/

t ags/

br anches/

*Thet r unk, t ags, and br anches trio are sometimes referred to as “the TTB directories”.

95

Repository Administration

Note that it doesn't matter where in your repository each project root is. If you have only one project per
repository, the logical place to put each project root is at the root of that project's respective repository.
If you have multiple projects, you might want to arrange them in groups inside the repository, perhaps
putting projects with similar goals or shared code in the same subdirectory, or maybe just grouping them
alphabetically. Such an arrangement might look like:

util s/
cal ¢/
t runk/
t ags/
br anches/
cal endar/
t runk/
t ags/
br anches/

of ficel
spr eadsheet/
t runk/
t ags/
br anches/

Lay out your repository in whatever way you see fit. Subversion does not expect or enforce a layout
schema—in its eyes, a directory is a directory is a directory. Ultimately, you should choose the reposit-
ory arrangement that meets the needs of the people who work on the projects that live there.

Creating the Layout, and Importing Initial Data

After deciding how to arrange the projects in your repository, you'll probably want to actually populate
the repository with that layout and with initial project data. There are a couple of ways to do thisin Sub-
version. You could use the svn mkdir command (see Chapter 9, Subversion Complete Reference) to cre-
ate each directory in your skeletal repository layout, one-by-one. A quicker way to accomplish the same
task is to use the svn import command (see the section called “svn import”). By first creating the lay-
out in a temporary location on your drive, you can import the whole layout tree into the repository in a

single commit:

$ nkdir tnpdir

$ cd tnpdir

$ nkdir projectA

$ nkdir projectAtrunk

$ mkdir projectA branches

$ nmkdir projectAltags

$ nkdir projectB

$ nkdir projectB/trunk

$ nkdir projectB/ branches

$ nkdir projectB/tags

$ svn inmport . file:///path/to/repos --nessage 'Initial repository |layout'
Addi ng proj ect A

Addi ng proj ect A/ trunk
Addi ng proj ect A/ branches
Addi ng proj ect A/ tags
Addi ng proj ectB

Addi ng proj ectB/trunk
Addi ng proj ect B/ branches
Addi ng proj ect B/ tags

96

Repository Administration

ébmritted revi sion 1.
$cd ..

$rm-rf tnpdir

$

Y ou can verify the results of the import by running the svn list command:

$ svn list --verbose file:///path/tol/repos
1 harry May 08 21:48 projectA
1 harry May 08 21:48 projectB/

Once you have your skeletal layout in place, you can begin importing actual project data into your re-
pository, if any such data exists yet. Once again, there are several ways to do this. Y ou could use the svn
import command. You could checkout a working copy from your new repository, move and arrange
project data inside the working copy, and use the svn add and svn commit commands. But once we
start talking about such things, we're no longer discussing repository administration. If you aren't already
familiar with the svn client program, see Chapter 3, Guided Tour.

Summary

By now you should have a basic understanding of how to create, configure, and maintain Subversion re-
positories. We've introduced you to the various tools that will assist you with this task. Throughout the
chapter, we've noted common administration pitfalls, and suggestions for avoiding them.

All that remains is for you to decide what exciting data to store in your repository, and finaly, how to
make it available over a network. The next chapter is all about networking.

97

Chapter 6. Server Configuration

A Subversion repository can be accessed simultaneously by clients running on the same machine on
which the repository resides using thefi | e: / // method. But the typical Subversion setup involves a
single server machine being accessed from clients on computers al over the office—or, perhaps, all over
the world.

This section describes how to get your Subversion repository exposed outside its host machine for use
by remote clients. We will cover Subversion's currently available server mechanisms, discussing the
configuration and use of each. After reading this section, you should be able to decide which networking
setup is right for your needs, and understand how to enable such a setup on your host computer.

Overview

Subversion was designed with an abstract network layer. This means that a repository can be program-
matically accessed by any sort of server process, and the client “repository access’ APl allows program-
mers to write plugins that speak relevant network protocols. In theory, Subversion can use an infinite
number of network implementations. In practice, there are only two servers at the time of writing.

Apache is an extremely popular webserver; using the mod_dav_svn module, Apache can access a re-
pository and make it available to clients via the WebDAV/DeltaV protocol, which is an extension of
HTTP. In the other corner is svnserve: a small, standalone server program that speaks a custom protocol
with clients. Table 6-1 presents a comparison of the two servers.

Note that Subversion, as an open-source project, does not officially endorse any server as “primary” or
“official”. Neither network implementation is treated as a second-class citizen; each server has advant-
ages and disadvantages. In fact, it's possible for different serversto run in parallel, each accessing your
repositories in its own way, and each without hindering the other (see the section called “ Supporting
Multiple Repository Access Methods’). Table 6.1, “Network Server Comparison” gives a brief over-
view and comparison of the two available Subversion servers—as an administrator, it's up to you to
choose whatever works best for you and your users.

Table 6.1. Network Server Comparison

Feature

Apache + mod_dav_svn svnserve

Authentication options

HTTP(S) basic auth, X.509 certific-| CRAM-MD5 or SSH
ates, LDAP, NTLM, or any other
mechanism available to Apache httpd

User account options

private 'users file

private 'users file, or existing system
(SSH) accounts

Authorization options

blanket read/write access, or per-
directory read/write control

blanket read/write access, or per-
directory write (but not read) control
using a pre-commit hook

Encryption viaoptional SSL viaoptiona SSH tunnel
Interoperability partialy usable by other WebDAYV [not interoperable
clients
Web viewing limited built-in support, or via|via3rd-party tools such asViewVC
3rd-party tools such as ViewVC
Speed somewhat slower somewhat faster
Initial setup somewhat complex fairly smple

98

Server Configuration

Network Model

This section is a general discussion of how a Subversion client and server interact with one another, re-
gardless of the network implementation you're using. After reading, you'll have a good understanding of
how a server can behave and the different ways in which a client can be configured to respond.

Requests and Responses

The Subversion client spends most of its time managing working copies. When it needs information
from arepository, however, it makes a network request, and the server responds with an appropriate an-
swer. The details of the network protocol are hidden from the user; the client attempts to access a URL,
and depending on the URL schema, a particular protocol is used to contact the server (see Repository
URLS). Users can run svn --version to see which URL schemas and protocols the client knows how to
use.

When the server process receives a client request, it typically demands that the client identify itself. It is-
sues an authentication challenge to the client, and the client responds by providing credentials back to
the server. Once authentication is complete, the server responds with the original information the client
asked for. Notice that this system is different from systems like CV'S, where the client pre-emptively of-
fers credentials (“logs in”) to the server before ever making a request. In Subversion, the server “pulls’
credentials by challenging the client at the appropriate moment, rather than the client “pushing” them.
This makes certain operations more elegant. For example, if a server is configured to allow anyone in
the world to read a repository, then the server will never issue an authentication challenge when a client
attemptsto svn checkout.

If the client's network request writes new data to the repository (e.g. svn commit), then a new revision
tree is created. If the client's request was authenticated, then the authenticated user's name is stored as
the value of the svn: aut hor property on the new revision (see the section called “Unversioned Prop-
erties’). If the client was not authenticated (in other words, the server never issued an authentication
challenge), then therevision'ssvn: aut hor property is empty. 1

Client Credentials Caching

Many servers are configured to require authentication on every request. This can become a big annoy-
ance to users, who are forced to type their passwords over and over again.

Happily, the Subversion client has aremedy for this: a built-in system for caching authentication creden-
tials on disk. By default, whenever the command-line client successfully responds to a server's authen-
tication challenge, it saves the credentials in the user's private runtime configuration area—in
~/ . subver si on/ aut h/ on Unix-like systems or %APPDATA% Subver si on/ aut h/ on Win-
dows. (The runtime area is covered in more detail in the section called “ Runtime Configuration Area’.)
Successful credentials are cached on disk, keyed on a combination of hostname, port, and authentication
realm.

When the client receives an authentication challenge, it first looks for the appropriate credentials in the
user's disk cache; if not present, or if the cached credentials fail to authenticate, then the client simply
prompts the user for the information.

Security-conscious people may be thinking to themselves, “ Caching passwords on disk? That's terrible!
Y ou should never do that!” Please remain calm, it's not as dangerous asit sounds.

e Theaut h/ caching areais permission-protected so that only the user (owner) can read data from it,
not the world at large. The operating system's own file permissions are protecting the password.

This problem is actually a FAQ, resulting from a misconfigured server setup.

99

Server Configuration

» On Windows 2000 and later, the Subversion client uses standard Windows cryptography services to
encrypt the password on disk. Because the encryption key is managed by Windows and is tied to the
user's own login credentials, only the user can decrypt the cached password. (Note: if the user's Win-
dows account password is reset by an administrator, al of the cached passwords become undecipher-
able. The Subversion client will behave as if they don't exist, prompting for passwords when re-
quired.)

» For the truly paranoid willing to sacrifice al convenience, it's possible to disable credential caching
atogether.

To disable caching for a single command, passthe - - no- aut h- cache option:

$ svn commit -F log meg.txt --no-auth-cache

Aut henti cation realm <svn://host.exanpl e.com 3690> exanple realm
User nanme: joe
Password for '

j oe':
Addi ng newfile

Transmitting file data .
Committed revision 2324.

password was not cached, so a second comit still pronpts us

$ svn delete newfile

$ svn conmit -F new nsg.txt

Aut hentication realm <svn://host.exanpl e.com 3690> exanple realm
User nanme: joe

Or, if you want to disable credential caching permanently, you can edit your runtime confi g file
(located next to the aut h/ directory). Simply set st or e- aut h- cr eds to no, and no credentials will
be cached on disk, ever.

[aut h]
store-auth-creds = no

Sometimes users will want to remove specific credentials from the disk cache. To do this, you need to
navigate into the aut h/ area and manually delete the appropriate cache file. Credentials are cached in
individua files; if you look inside each file, you will see keys and values. The svn: real nstri ng
key describes the particular server realm that the file is associated with:

$ |'s ~/.subversion/auth/svn. sinple/
5671adf 2865e267db74f 09ba6f 872c28
3893ed123b39500bca8a0b382839198e
5¢3c22968347b390f 349f f 340196ed39

$ cat ~/.subversion/auth/svn. sinpl e/ 5671adf 2865e267db74f 09ba6f 872c28

K 8
user nane
V 3
j oe
K 8
passwor d
V 4
bl ah

100

Server Configuration

K 15

svn:real mstring

V 45

<https://svn. domai n.com 443> Joe's repository
END

Once you have located the proper cache file, just deleteiit.

One last word about client authentication behavior: a bit of explanation about the - - user nanme and -

- passwor d options is needed. Many client subcommands accept these options; however it is import-
ant to understand using these options does not automatically send credentials to the server. As discussed
earlier, the server “pulls’ credentials from the client when it deems necessary; the client cannot “push”
them at will. If a username and/or password are passed as options, they will only be presented to the
server if the server requests them. 2 Typically, these options are used when:

» the user wants to authenticate as a different user than her system login name, or
e ascript wants to authenticate without using cached credentials.

Here isafinal summary that describes how a Subversion client behaves when it receives an authentica-
tion challenge:

1. Check whether the user specified any credentials as command-line options, via- - user nane and/
or - - passwor d. If not, or if these options fail to authenticate successfully, then

2. Look up the server'srealm in the runtime aut h/ area, to seeif the user already has the appropriate
credentials cached. If not, or if the cached credentials fail to authenticate, then

3. Resort to prompting the user.

If the client successfully authenticates by any of the methods listed above, it will attempt to cache the
credentials on disk (unless the user has disabled this behavior, as mentioned earlier).

svnserve, a custom server

The svnserve program is a lightweight server, capable of speaking to clients over TCP/IP using a cus-
tom, stateful protocol. Clients contact an svnserve server by using URLs that begin withthesvn: // or
svn+ssh: // schema. This section will explain the different ways of running svnserve, how clients
authenticate themselves to the server, and how to configure appropriate access control to your repositor-
ies.

Invoking the Server

There are a few different ways to invoke the svnserve program. If invoked with no options, you'll see
nothing but a help message. However, if you're planning to have inetd launch the process, then you can
passthe-i (--i netd) option:

2Agai n, a common mistake is to misconfigure a server so that it never issues an authentication challenge. When users pass - - user nane and -
- passwor d options to the client, they're surprised to see that they're never used, i.e. new revisions still appear to have been committed anonym-

101

Server Configuration

$ svnserve -i
(success (1 2 (ANONYMOUS) (edit-pipeline)))

When invoked with the - - i net d option, svnserve attempts to speak with a Subversion client via stdin
and stdout using a custom protocol. Thisis the standard behavior for a program being run viainetd. The
IANA has reserved port 3690 for the Subversion protocol, so on a Unix-like system you can add lines to
/ et c/ servi ces likethese (if they don't aready exist):

svn 3690/ tcp # Subversion
svn 3690/ udp # Subversion

And if your system is using a classic Unix-like inetd daemon, you can add this line to /
etc/inetd. conf:

svn streamtcp nowait svnowner /usr/bin/svnserve svnserve -i

Make sure “svnowner” is a user which has appropriate permissions to access your repositories. Now,
when a client connection comes into your server on port 3690, inetd will spawn an svnserve process to
serviceit.

On a Windows system, third-party tools exist to run svnserve as a service. Look on Subversion's web-
sitefor alist of these tools.

A second option isto run svnser ve as a standalone “daemon” process. Use the - d option for this:

$ svnserve -d
svnserve is now running, listening on port 3690

When running svnserve in daemon mode, you can use the --listen-port= and -
-1 i st en- host = options to customize the exact port and hostname to “bind” to.

There's still athird way to invoke svnserve, and that's in “tunnel mode”, with the - t option. This mode
assumes that a remote-service program such as RSH or SSH has successfully authenticated a user and is
now invoking a private svnserve process as that user. The svnserve program behaves normally
(communicating via stdin and stdout), and assumes that the traffic is being automatically redirected over
some sort of tunnel back to the client. When svnserveisinvoked by atunnel agent like this, be sure that
the authenticated user has full read and write access to the repository database files. (See Servers and
Permissions: A Word of Warning.) It's essentially the same as a local user accessing the repository via
file:/// URLs.

Serversand Permissions: A Word of Warning

First, remember that a Subversion repository is a collection of database files; any process which accesses the
repository directly needs to have proper read and write permissions on the entire repository. If you're not care-
ful, this can lead to a number of headaches, especialy if you're using a Berkeley DB database rather than
FSFS. Be sure to read the section called “ Supporting Multiple Repository Access Methods’.

Secondly, when configuring svnserve, Apache httpd, or any other server process, keep in mind that you
might not want to launch the server process as the user r oot (or as any other user with unlimited permis-
sions). Depending on the ownership and permissions of the repositories you're exporting, it's often prudent to
use a different—perhaps custom—user. For example, many administrators create a new user named svn,

102

Server Configuration

grant that user exclusive ownership and rights to the exported Subversion repositories, and only run their serv-
er processes as that user.

Once the svnserve program is running, it makes every repository on your system available to the net-
work. A client needs to specify an absolute path in the repository URL. For example, if arepository is
located at /usr/local/repositories/projectl, then a client would reach it via
svn:// host. exanpl e. com usr/ | ocal /repositories/projectl .Toincrease security,
you can passthe - r option to svnserve, which restricts it to exporting only repositories below that path:

$ svnserve -d -r /usr/local/repositories

Using the - r option effectively modifies the location that the program treats as the root of the remote
filesystem space. Clients then use URLs that have that path portion removed from them, leaving much
shorter (and much less revealing) URLs:

$ svn checkout svn://host.exanpl e.com projectl

Built-in authentication and authorization

When aclient connects to an svnserve process, the following things happen:

» Theclient selects a specific repository.

» The server processes the repository's conf / svnser ve. conf file, and begins to enforce any au-
thentication and authorization policies defined therein.

» Depending on the situation and authorization policies,

« the client may be allowed to make reguests anonymously, without ever receiving an authentica-
tion challenge, OR

« theclient may be challenged for authentication at any time, OR

o if operating in “tunnel mode”, the client will declare itself to be already externally authenticated.

At the time of writing, the server only knows how to send a CRAM-MD5 3 authentication challenge. In
essence, the server sends a bit of data to the client. The client uses the MD5 hash algorithm to create a
fingerprint of the data and password combined, then sends the fingerprint as a response. The server per-
forms the same computation with the stored password to verify that the result is identical. At no point
does the actual password travel over the network.

It's also possible, of course, for the client to be externally authenticated via a tunnel agent, such as SSH.
In that case, the server simply examines the user it's running as, and uses it as the authenticated user-
name. For more on this, see the section called “ SSH authentication and authorization”.

As you've aready guessed, a repository's svnser ve. conf file is the central mechanism for con-
trolling authentication and authorization policies. The file has the same format as other configuration
files (see the section called “Runtime Configuration Area”): section names are marked by sguare brack-

3See RFC 2195,

103

Server Configuration

ets ([and]), comments begin with hashes (#), and each section contains specific variables that can be
set (vari abl e = val ue). Let'swalk through thisfile and learn how to use them.

Create a 'users' file and realm

For now, the [gener al] section of the svnser ve. conf has al the variables you need. Begin by
defining a file which contains usernames and passwords, and an authentication realm:

[general] .
password-db = userfile
real m = exanple realm

The r eal mis a name that you define. It tells clients which sort of “authentication namespace” they're
connecting to; the Subversion client displays it in the authentication prompt, and uses it as a key (along
with the server's hostname and port) for caching credentials on disk (see the section called “Client Cre-
dentials Caching”). The passwor d- db variable points to a separate file that contains a list of user-
names and passwords, using the same familiar format. For example:

[users]
harry = foopassword
sally = barpassword

The value of passwor d- db can be an absolute or relative path to the users file. For many admins, it's
easy to keep the file right in the conf / area of the repository, alongside svnser ve. conf. On the
other hand, it's possible you may want to have two or more repositories share the same users file; in that
case, the file should probably live in a more public place. The repositories sharing the users file should
also be configured to have the same realm, since the list of users essentially defines an authentication
realm. Wherever the file lives, be sure to set the file's read and write permissions appropriately. If you
know which user(s) svnserve will run as, restrict read access to the user file as necessary.

Set access controls

There are two more variables to set in the svnser ve. conf file: they determine what unauthenticated
(anonymous) and authenticated users are allowed to do. The variables anon- access and aut h-

access can be set to the valuesnone, r ead, or wri t e. Setting the value to none restricts all access
of any kind; r ead allows read-only access to the repository, and wr i t e allows complete read/write ac-
cess to the repository. For example:

[general] _
password-db = userfile
real m = exanple realm

anonynous users can only read the repository
anon- access = read

aut henticated users can both read and wite
aut h-access = wite

The example settings are, in fact, the default values of the variables, should you forget to define them. If
you want to be even more conservative, you can block anonymous access completely:

[general] .
password-db = userfile
real m = exanple realm

104

Server Configuration

anonynous users aren't all owed
anon- access = none

aut henticated users can both read and wite
aut h-access = wite

Notice that svnserve only understands “blanket” access control. A user either has universal read/write
access, universal read access, or no access. There is no detailed control over access to specific paths
within the repository. For many projects and sites, this level of access control is more than adequate.
However, if you need per-directory access control, you'll need to use either use Apache with
mod_authz_svn (see the section called “Per-Directory Access Control”) or use a pre-commit hook
script to control write access (see the section called “Hook Scripts’). The Subversion distribution comes
with commit-access-control.pl and the more sophisticated svnperms.py scripts for use in pre-commit
scripts.

SSH authentication and authorization

svnser ve's built-in authentication can be very handy, because it avoids the need to create real system ac-
counts. On the other hand, some administrators already have well-established SSH authentication frame-
works in place. In these situations, all of the project’'s users already have system accounts and the ability
to “SSH into” the server machine.

It's easy to use SSH in conjunction with svnserve. The client smply uses the svn+ssh:// URL
schema to connect:

$ whoani
harry

$ svn list svn+ssh://host.exanpl e. con repos/ proj ect
harry@ost . exanpl e.coml' s password: *****

f oo
bar
baz

In this example, the Subversion client is invoking a local ssh process, connecting to
host . exanpl e. com authenticating as the user har r y, then spawning a private svnserve process on
the remote machine running as the user har ry. The svnserve command is being invoked in tunnel
mode (- t) and its network protocol is being “tunneled” over the encrypted connection by ssh, the tun-
nel-agent. svnserveis aware that it's running as the user har r y, and if the client performs a commit, the
authenticated username will be attributed as the author of the new revision.

The important thing to understand here is that the Subversion client is not connecting to a running svn-
serve daemon. This method of access doesn't require a daemon, nor does it notice one if present. It relies
wholly on the ability of ssh to spawn a temporary svnserve process, which then terminates when the
network connection is closed.

When using svn+ssh: // URLsto access a repository, remember that it's the ssh program prompting
for authentication, and not the svn client program. That means there's no automatic password caching
going on (see the section called “Client Credentials Caching”). The Subversion client often makes mul-
tiple connections to the repository, though users don't normally notice this due to the password caching
feature. When using svn+ssh: // URLSs, however, users may be annoyed by ssh repeatedly asking for
a password for every outbound connection. The solution is to use a separate SSH password-caching tool
like ssh-agent on a Unix-like system, or pageant on Windows.

105

Server Configuration

When running over a tunnel, authorization is primarily controlled by operating system permissions to
the repository's database files; it's very much the same as if Harry were accessing the repository directly
viaafile:/// URL. If multiple system users are going to be accessing the repository directly, you
may want to place them into a common group, and you'll need to be careful about umasks. (Be sure to
read the section called “ Supporting Multiple Repository Access Methods’.) But even in the case of tun-
neling, the svnser ve. conf file can still be used to block access, by simply setting aut h- access
= readoraut h-access = none.

Y ou'd think that the story of SSH tunneling would end here, but it doesn't. Subversion allows you to cre-
ate custom tunnel behaviors in your run-time conf i g file (see the section called “Runtime Configura-
tion Ared’). For example, suppose you want to use RSH instead of SSH. Inthe[t unnel s] section of
your conf i g file, simply defineit like this:

[tunnel s]
rsh = rsh

And now, you can use this new tunnel definition by using a URL schema that matches the name of your
new variable: svn+rsh:// host/ pat h. When using the new URL schema, the Subversion client
will actually be running the command r sh host svnserve -t behind the scenes. If you include a username
in the URL (for example, svn+rsh: / / user name@ost / pat h) the client will also include that in
its command (r sh user name@host svnserve -t). But you can define new tunneling schemes to be much
more clever than that:

[tunnel s]
joessh = $JCESSH /opt/al ternate/ ssh -p 29934

This example demonstrates a couple of things. First, it shows how to make the Subversion client launch
avery specific tunneling binary (the one located at / opt / al t er nat e/ ssh) with specific options. In
this case, accessing asvn+j oessh: // URL would invoke the particular SSH binary with- p 29934
as arguments—useful if you want the tunnel program to connect to a non-standard port.

Second, it shows how to define a custom environment variable that can override the name of the tunnel-
ing program. Setting the SVN_SSH environment variable is a convenient way to override the default
SSH tunnel agent. But if you need to have several different overrides for different servers, each perhaps
contacting a different port or passing a different set of options to SSH, you can use the mechanism
demonstrated in this example. Now if we were to set the JOESSH environment variable, its value would
override the entire value of the tunnel varisble—$JOESSH would be executed instead of /
opt/alter nate/ssh -p 29934.

SSH configuration tricks

It's not only possible to control the way in which the client invokes ssh, but also to control the behavior
of sshd on your server machine. In this section, we'll show how to control the exact svnserve command
executed by sshd, aswell as how to have multiple users share a single system account.

Initial setup

To begin, locate the home directory of the account you'll be using to launch svnserve. Make sure the ac-
count has an SSH public/private keypair installed, and that the user can log in via public-key authentica-
tion. Password authentication will not work, since al of the following SSH tricks revolve around using
the SSH aut hori zed_keys file.

If it doesn't dready exist, create the authorized _keys file (on Unix, typicaly
~/ . ssh/ aut hori zed_keys). Each linein thisfile describes a public key that is allowed to connect.

106

Server Configuration

Thelines aretypically of the form:;
ssh-dsa AAAABt ceQeuch. ... user @xanpl e.com

Thefirst field describes the type of key, the second field is the uuencoded key itself, and the third field is
acomment. However, it's alesser known fact that the entire line can be preceded by acomand field:

conmmand="pr ogrant ssh-dsa AAAABt ce9euch.... user @xanple.com

When the conmand field is set, the SSH daemon will run the named program instead of the typical svn-
serve -t invocation that the Subversion client asks for. This opens the door to a number of server-side
tricks. In the following examples, we abbreviate the lines of thefile as:

conmand="pr ogran’ TYPE KEY COMVENT

Controlling the invoked command

Because we can specify the executed server-side command, it's easy to name a specific svnserve binary
to run and to pass it extra arguments:

conmand="/pat h/to/svnserve -t -r /virtual/root" TYPE KEY COVMENT

In thisexample, / pat h/ t o/ svnser ve might be a custom wrapper script around svnserve which sets
the umask (see the section called “ Supporting Multiple Repository Access Methods”). It aso shows how
to anchor svnservein avirtual root directory, just as one often does when running svnserve as a daemon
process. This might be done either to restrict access to parts of the system, or simply to relieve the user
of having to type an absolute path inthesvn+ssh: // URL.

It's also possible to have multiple users share a single account. Instead of creating a separate system ac-
count for each user, generate a public/private keypair for each person. Then place each public key into
theaut hori zed_user s file, one per ling, and usethe - - t unnel - user option:

conmand="svnserve -t --tunnel-user=harry" TYPEl KEY1 harry@xanpl e. com
conmand="svnserve -t --tunnel -user=sally" TYPE2 KEY2 sal | y@xanpl e. com

This example allows both Harry and Sally to connect to the same account via public-key authentication.
Each of them has a custom command that will be executed; the - - t unnel - user option tells svnserve
-t to assume that the named argument is the authenticated user. Without - - t unnel - user, it would
appear as though al commits were coming from the one shared system account.

A final word of caution: giving a user access to the server via public-key in a shared account might till
allow other forms of SSH access, even if you've set the conmand value in aut hori zed_keys. For
example, the user may still get shell access through SSH, or be able to perform X11 or general port-
forwarding through your server. To give the user as little permission as possible, you may want to spe-
cify a number of restrictive optionsimmediately after the command:

conmand="svnserve -t --tunnel -user=harry", no-port-forwarding,\
no- agent - f or war di ng, no- X11-f or war di ng, no-pty \
TYPE1 KEY1 harry@xanpl e.com

107

Server Configuration

httpd, the Apache HTTP server

The Apache HTTP Server is a “heavy duty” network server that Subversion can leverage. Via a custom
module, httpd makes Subversion repositories available to clients via the WebDAV/DeltaV protocol,
which is an extension to HTTP 1.1 (see http://www.webdav.org/ for more information). This protocol
takes the ubiquitous HTTP protocol that is the core of the World Wide Web, and adds writ-
ing—specifically, versioned writing—capabilities. The result is a standardized, robust system that is
conveniently packaged as part of the Apache 2.0 software, is supported by numerous operating systems
and third-party products, and doesn't require network administrators to open up yet another custom port.
4 While an Apache-Subversion server has more features than svnserve, it's also a bit more difficult to set
up. With flexibility often comes more complexity.

Much of the following discussion includes references to Apache configuration directives. While some
examples are given of the use of these directives, describing them in full is outside the scope of this
chapter. The Apache team maintains excellent documentation, publicly available on their website at ht-
tp://httpd.apache.org. For example, a general reference for the configuration directives is located at ht-
tp://httpd.apache.org/docs-2.0/mod/directives.html.

Also, as you make changes to your Apache setup, it is likely that somewhere along the way a mistake
will be made. If you are not already familiar with Apache's logging subsystem, you should become
aware of it. In your ht t pd. conf file are directives that specify the on-disk locations of the access and
error logs generated by Apache (the Cust onlog and Err or Log directives, respectively). Subver-
sion's mod_dav_svn uses Apache's error logging interface as well. Y ou can always browse the contents
of those files for information that might reveal the source of a problem that is not clearly noticeable oth-
erwise.

Why Apache 2?

If you're a system administrator, it's very likely that you're already running the Apache web server and have
some prior experience with it. At the time of writing, Apache 1.3 is by far the most popular version of
Apache. The world has been somewhat slow to upgrade to the Apache 2.X series for various reasons. some
people fear change, especially changing something as critical as a web server. Other people depend on plug-in
modules that only work against the Apache 1.3 API, and are waiting for a 2.X port. Whatever the reason,
many people begin to worry when they first discover that Subversion's Apache module is written specifically
for the Apache 2 API.

The proper response to this problem is: don't worry about it. It's easy to run Apache 1.3 and Apache 2 side-

by-side; simply install them to separate places, and use Apache 2 as a dedicated Subversion server that runs
on aport other than 80. Clients can access the repository by placing the port number into the URL :

$ svn checkout http://host.exanpl e.com 7382/ r epos/ proj ect

Prerequisites

To network your repository over HTTP, you basically need four components, available in two packages.
You'll need Apache httpd 2.0, the mod_dav DAV module that comes with it, Subversion, and the
mod_dav_svn filesystem provider module distributed with Subversion. Once you have all of those com-
ponents, the process of networking your repository is as simple as:

e getting httpd 2.0 up and running with the mod_dav module,

“*They really hate doing that.

108

http://www.webdav.org/
http://httpd.apache.org
http://httpd.apache.org
 http://httpd.apache.org/docs-2.0/mod/directives.html
 http://httpd.apache.org/docs-2.0/mod/directives.html

Server Configuration

» ingtaling the mod_dav_svn plugin to mod_dav, which uses Subversion's libraries to access the re-
pository, and

« configuring your ht t pd. conf fileto export (or expose) the repository.

Y ou can accomplish the first two items either by compiling httpd and Subversion from source code, or
by installing pre-built binary packages of them on your system. For the most up-to-date information on
how to compile Subversion for use with the Apache HTTP Server, as well as how to compile and con-
figure Apache itself for this purpose, see the | NSTALL file in the top level of the Subversion source
code tree.

Basic Apache Configuration

Once you have al the necessary components installed on your system, all that remains is the configura-
tion of Apache viaits ht t pd. conf file. Instruct Apache to load the mod_dav_svn module using the
LoadModul e directive. This directive must precede any other Subversion-related configuration items.
If your Apache was installed using the default layout, your mod_dav_svn module should have been in-
stalled in the nodul es subdirectory of the Apache install location (often / usr /| ocal / apache?2).
The LoadMbdul e directive has a simple syntax, mapping a named module to the location of a shared
library on disk:

LoadModul e dav_svn_nodul e nodul es/ nod_dav_svn. so

Note that if mod_dav was compiled as a shared object (instead of statically linked directly to the httpd
binary), you'll need a similar LoadModul e statement for it, too. Be sure that it comes before the
mod_dav_svn line:

LoadModul e dav_nodul e nodul es/ nod_dav. so
LoadModul e dav_svn_nodul e nodul es/ nod_dav_svn. so

At alater location in your configuration file, you now need to tell Apache where you keep your Subver-
sion repository (or repositories). The Locat i on directive has an XML-like notation, starting with an
opening tag, and ending with a closing tag, with various other configuration directives in the middle.
The purpose of the Locat i on directive is to instruct Apache to do something special when handling
requests that are directed at a given URL or one of its children. In the case of Subversion, you want
Apache to simply hand off support for URLSs that point at versioned resources to the DAV layer. You
can instruct Apache to delegate the handling of all URLs whose path portions (the part of the URL that
follows the server's name and the optional port number) begin with/ r epos/ to aDAV provider whose
repository is located at / absol ut e/ pat h/ t o/ reposi tory using the following ht t pd. conf
syntax:

<Location /repos>

DAV svn

SVNPat h /absol ute/ path/to/repository
</ Locati on>

If you plan to support multiple Subversion repositories that will reside in the same parent directory on
your local disk, you can use an aternative directive, the SVNPar ent Pat h directive, to indicate that
common parent directory. For example, if you know you will be creating multiple Subversion repositor-
ies in a directory /usr/local/svn tha would be accessed via URLs like ht-
tp://ny.server.com svn/reposl, http://mny.server.confsvn/repos2, and so on,
you could usethe ht t pd. conf configuration syntax in the following example:

109

Server Configuration

<Location /svn>
DAV svn

any "/svn/foo" URL will nmap to a repository /usr/local/svn/foo
SVNPar ent Pat h /usr/ 1| ocal / svn
</ Locati on>

Using the previous syntax, Apache will delegate the handling of all URLs whose path portions begin
with / svn/ to the Subversion DAV provider, which will then assume that any items in the directory
specified by the SVNPar ent Pat h directive are actually Subversion repositories. Thisis a particularly
convenient syntax in that, unlike the use of the SVNPat h directive, you don't have to restart Apache in
order to create and network new repositories.

Be sure that when you define your new Locat i on, it doesn't overlap with other exported Locations.
For example, if your main Documnent Root is / www, do not export a Subversion repository in
<Location /ww/ repos>. If arequest comes in for the URI / ww/ r epos/ f 0o. ¢, Apache
won't know whether to look for afiler epos/ f 0o. ¢ in the Docunent Root , or whether to delegate
mod_dav_svn to return f 0o. ¢ from the Subversion repository.

Server Names and the COPY Request

Subversion makes use of the COPY request type to perform server-side copies of files and directories. As part
of the sanity checking done by the Apache modules, the source of the copy is expected to be located on the
same machine as the destination of the copy. To satisfy this requirement, you might need to tell mod dav the
name you use as the hostname of your server. Generally, you can use the Ser ver Name directive in ht -
t pd. conf to accomplish this.

Server Nane svn. exanpl e. com

If you are using Apache's virtual hosting support viathe NaneVi r t ual Host directive, you may need to use
the Ser ver Al i as directive to specify additional names that your server is known by. Again, refer to the
Apache documentation for full details.

At this stage, you should strongly consider the question of permissions. If you've been running Apache
for some time now as your regular web server, you probably already have a collection of content—web
pages, scripts and such. These items have already been configured with a set of permissions that allows
them to work with Apache, or more appropriately, that allows Apache to work with those files. Apache,
when used as a Subversion server, will also need the correct permissions to read and write to your Sub-
version repository. (See Servers and Permissions: A Word of Warning.)

You will need to determine a permission system setup that satisfies Subversion's requirements without
messing up any previously existing web page or script installations. This might mean changing the per-
missions on your Subversion repository to match those in use by other things that Apache serves for
you, or it could mean using the User and G- oup directivesin ht t pd. conf to specify that Apache
should run as the user and group that owns your Subversion repository. There is no single correct way to
set up your permissions, and each administrator will have different reasons for doing things a certain
way. Just be aware that permission-related problems are perhaps the most common oversight when con-
figuring a Subversion repository for use with Apache.

Authentication Options

At thispoint, if you configured ht t pd. conf to contain something like

110

Server Configuration

<Location /svn>

DAV svn

SVNPar ent Path /usr/ | ocal / svn
</ Locati on>

...then your repository is “anonymously” accessible to the world. Until you configure some authentica-
tion and authorization policies, the Subversion repositories you make available viathe Locat i on dir-
ective will be generally accessible to everyone. In other words,

» anyone can use their Subversion client to checkout aworking copy of arepository URL (or any of its
subdirectories),

» anyone can interactively browse the repository's latest revision simply by pointing their web browser
to the repository URL, and

e anyone can commit to the repository.

Basic HTTP Authentication

The easiest way to authenticate a client is via the HTTP Basic authentication mechanism, which simply
uses a username and password to verify that a user is who she says she is. Apache provides an htpasswd
utility for managing the list of acceptable usernames and passwords, those to whom you wish to grant
specia access to your Subversion repository. Let's grant commit access to Sally and Harry. First, we
need to add them to the password file.

$ ### First tinme: use -c to create the file

$ ### Use -mto use MD5 encryption of the password, which is nore secure
$ htpasswd -cm/etc/svn-auth-file harry

New password:; *****

Re-type new password: *****

Addi ng password for user harry

$ htpasswd -m/etc/svn-auth-file sally

New password: ****x*x*

Re-type new password: ****x*x*

Addi ng password for user sally

Next, you need to add some more ht t pd. conf directivesinside your Locat i on block to tell Apache
what to do with your new password file. The Aut hType directive specifies the type of authentication
system to use. In this case, we want to specify the Basi ¢ authentication system. Aut hNane is an arbit-
rary name that you give for the authentication domain. Most browsers will display this name in the pop-
up dialog box when the browser is querying the user for his name and password. Finally, use the Au-

t hUser Fi | e directive to specify the location of the password file you created using htpasswd.

After adding these three directives, your <Locat i on> block should look something like this:

<Location /svn>
DAV svn
SVNPar ent Pat h /usr/| ocal / svn
Aut hType Basic
Aut hName " Subversion repository”
Aut hUserFile /etc/svn-auth-file
</ Locati on>

111

Server Configuration

This <Locat i on> block is not yet complete, and will not do anything useful. It's merely telling
Apache that whenever authorization is required, Apache should harvest a username and password from
the Subversion client. What's missing here, however, are directives that tell Apache which sorts of client
requests require authorization. Wherever authorization is required, Apache will demand authentication
aswell. The simplest thing to do is protect al requests. Adding Requi re val i d- user tells Apache
that all requests require an authenticated user:

<Location /svn>
DAV svn
SVNPar ent Path /usr/ | ocal / svn
Aut hType Basi c
Aut hNanme " Subversion repository
Aut hUserFile /etc/svn-auth-file
Requi re valid-user

</ Locati on>

Be sure to read the next section (the section called “ Authorization Options’) for more detail on the Re-
qui r e directive and other ways to set authorization policies.

One word of warning: HTTP Basic Auth passwords pass in very nearly plain-text over the network, and
thus are extremely insecure. If you're worried about password snooping, it may be best to use some sort
of SSL encryption, so that clients authenticate viaht t ps: // instead of ht t p: / / ; at abare minimum,
you can configure Apache to use a self-signed server certificate. 5 Consuilt Apache's documentation (and
OpenSSL documentation) about how to do that.

SSL Certificate Management

Businesses that need to expose their repositories for access outside the company firewall should be con-
scious of the possibility that unauthorized parties could be “sniffing” their network traffic. SSL makes
that kind of unwanted attention less likely to result in sensitive data leaks.

If a Subversion client is compiled to use OpenSSL, then it gains the ability to speak to an Apache server
viahtt ps:// URLs. The Neon library used by the Subversion client is not only able to verify server
certificates, but can also supply client certificates when challenged. When the client and server have ex-
changed SSL certificates and successfully authenticated one another, all further communication is en-
crypted viaa session key.

It's beyond the scope of this book to describe how to generate client and server certificates, and how to
configure Apache to use them. Many other books, including Apache's own documentation, describe this
task. But what can be covered here is how to manage server and client certificates from an ordinary Sub-
version client.

When speaking to Apache via htt ps: //, a Subversion client can receive two different types of in-
formation:

* aserver certificate

» ademand for aclient certificate

If the client receives a server certificate, it needs to verify that it trusts the certificate: is the server really
who it claims to be? The OpenSSL library does this by examining the signer of the server certificate, or

certifying authority (CA). If OpenSSL is unable to automatically trust the CA, or if some other problem
occurs (such as an expired certificate or hostname mismatch), the Subversion command-line client will

Swhile self-signed server certificates are still vulnerable to a“man in the middle” attack, such an attack is still much more difficult for a casual
observer to pull off, compared to sniffing unprotected passwords.

112

Server Configuration

ask you whether you want to trust the server certificate anyway:

$ svn list https://host.exanpl e. com repos/ proj ect

Error validating server certificate for 'https://host.exanple.com 443":

- The certificate is not issued by a trusted authority. Use the
fingerprint to validate the certificate nanually!

Certificate information:

- Hostnane: host. exanpl e. com

- Valid: fromJan 30 19:23:56 2004 GMI until Jan 30 19:23:56 2006 GMI

- Issuer: CA, exanple.com Sonetown, California, US

- Fingerprint: 7d:el:a9:34:33: 39: ba: 6a: €9: a5: c4: 22: 98: 7b: 76: 5¢: 92: a0: 9¢c: 7b

(R eject, accept (t)enmporarily or accept (p)ermanently?

This dialogue should look familiar; it's essentially the same question you've probably seen coming from
your web browser (which isjust another HTTP client like Subversion!). If you choose the (p)ermanent
option, the server certificate will be cached in your private run-time aut h/ areain just the same way
your username and password are cached (see the section called “ Client Credentials Caching”). If cached,
Subversion will automatically remember to trust this certificate in future negotiations.

Your run-time ser ver s file also gives you the ability to make your Subversion client automatically
trust specific CAs, either globaly or on a per-host basis. Simply set the ssl -aut hority-files
variable to a semicolon-separated list of PEM-encoded CA certificates:

[gl obal]
ssl-authority-files = /path/to/ CAcertl. pem/path/to/ CAcert2. pem

Many OpenSSL installations also have a pre-defined set of “default” CAs that are nearly universally
trusted. To make the Subversion client automatically trust these standard authorities, set the ssl -
trust-defaul t-cavariabletotrue.

When talking to Apache, a Subversion client might also receive a challenge for a client certificate.
Apache is asking the client to identify itself: is the client really who it saysit is? If all goes correctly, the
Subversion client sends back a private certificate signed by a CA that Apache trusts. A client certificate
is usually stored on disk in encrypted format, protected by alocal password. When Subversion receives
this challenge, it will ask you for both a path to the certificate and the password which protectsiit:

$ svn list https://host.exanpl e.com repos/ proj ect

Aut hentication realm https://host. exanple.com 443
Client certificate filenane: /path/to/ny/cert.pl2
Passphrase for '/path/to/my/cert.pl2': *x**x*xx

Notice that the client certificate is a“pl2” file. To use a client certificate with Subversion, it must bein
PKCS#12 format, which is a portable standard. Most web browsers are already able to import and export
certificates in that format. Another option is to use the OpenSSL command-line tools to convert existing
certificates into PK CS#12.

Again, the runtime ser ver s file allows you to automate this challenge on a per-host basis. Either or

both pieces of information can be described in runtime variables:

[gr oups]
exanpl ehost = host. exanpl e. com

113

Server Configuration

[exanpl ehost]
ssl-client-cert-file = /path/to/ my/cert.pl2
ssl-client-cert-password = sonmepassword

Onceyouvesetthessl -client-cert-fileandssl-client-cert-password variableséthe
Subversion client can automatically respond to a client certificate challenge without prompting you.

Authorization Options

At this point, you've configured authentication, but not authorization. Apache is able to challenge clients
and confirm identities, but it has not been told how to allow or restrict access to the clients bearing those
identities. This section describes two strategies for controlling access to your repositories.

Blanket Access Control

The simplest form of access contral is to authorize certain users for either read-only access to a reposit-
ory, or read/write access to arepository.

You can restrict access on all repository operations by adding the Requi re val i d- user directiveto
your <Locat i on> block. Using our previous example, this would mean that only clients that claimed
to be either harry or sal | y, and provided the correct password for their respective username, would
be allowed to do anything with the Subversion repository:

<Location /svn>
DAV svn
SVNPar ent Pat h /usr/ | ocal / svn

how to authenticate a user

Aut hType Basi c

Aut hName " Subversion repository”
Aut hUser Fil e /path/to/users/file

only authenticated users may access the repository
Requi re valid-user
</ Locati on>

Sometimes you don't need to run such atight ship. For example, Subversion's own source code reposit-
ory at http://svn.collab.net/repos/svn allows anyone in the world to perform read-only repository tasks
(like checking out working copies and browsing the repository with a web browser), but restricts all
write operations to authenticated users. To do this type of selective restriction, you can use the Li mi t
and Li mi t Except configuration directives. Like the Locat i on directive, these blocks have starting
and ending tags, and you would nest them inside your <Locat i on> block.

The parameters present on the Li mi t and Li m t Except directives are HTTP request types that are
affected by that block. For example, if you wanted to disallow all access to your repository except the
currently supported read-only operations, you would usethe Li ni t Except directive, passing the GET,
PROPFI ND, OPTI ONS, and REPORT request type parameters. Then the previously mentioned Re-
qui re valid-user directive would be placed inside the <Li mi t Except > block instead of just
insidethe<Locat i on> block.

<Location /svn>
DAV svn
SVNPar ent Pat h /usr/ | ocal / svn

5More security-conscious folk might not want to store the client certificate password in the runtime ser ver s file.

114

http://svn.collab.net/repos/svn

Server Configuration

how to aut henticate a user

Aut hType Basic

Aut hName " Subversion repository”
Aut hUserFil e /path/to/users/file

For any operations other than these, require an authenticated user.
<Li m t Except GET PROPFI ND OPTI ONS REPORT>
Require valid-user
</LimtExcept>
</ Locati on>

These are only a few simple examples. For more in-depth information about Apache access control and
the Requi r e directive, take alook at the Securi ty section of the Apache documentation's tutorials
collection at http://httpd.apache.org/docs-2.0/misc/tutorial s.html.

Per-Directory Access Control

It's possible to set up finer-grained permissions using a second Apache httpd module, mod_authz_svn.
This module grabs the various opague URLSs passing from client to server, asks mod_dav_svn to decode
them, and then possibly vetoes requests based on access policies defined in a configuration file.

If you've built Subversion from source code, mod_authz_svn is automatically built and installed along-
side mod_dav_svn. Many binary distributionsinstall it automatically as well. To verify that it's installed
correctly, make sure it comesright after mod_dav_svn's LoadMbdul e directivein ht t pd. conf :

LoadModul e dav_nodul e nodul es/ nod_dav. so
LoadModul e dav_svn_nodul e nodul es/ nod_dav_svn. so
LoadModul e aut hz_svn_nodul e nodul es/ nod_aut hz_svn. so

To activate this module, you need to configure your Locat i on block to use the Aut hzSVNAccess-
Fi | e directive, which specifies a file containing the permissions policy for paths within your repositor-
ies. (In amoment, wel'l discuss the format of that file)

Apache is flexible, so you have the option to configure your block in one of three general patterns. To
begin, choose one of these basic configuration patterns. (The examples below are very simple; look at
Apache's own documentation for much more detail on Apache authentication and authorization options.)

The simplest block is to allow open access to everyone. In this scenario, Apache never sends authentica-
tion challenges, so all users are treated as “anonymous’.

Example 6.1. A sample configuration for anonymous access.

<Location /repos>
DAV svn
SVNPar ent Pat h /usr/ | ocal / svn

our access control policy

Aut hzSVNAccessFi |l e / path/to/access/file
</ Locati on>

On the opposite end of the paranocia scale, you can configure your block to demand authentication from

115

http://httpd.apache.org/docs-2.0/misc/tutorials.html

Server Configuration

everyone. All clients must supply credentials to identify themselves. Your block unconditionaly re-
quires authentication viathe Requi r e val i d- user directive, and defines a means to authenticate.

Example 6.2. A sample configuration for authenticated access.

<Location /repos>
DAV svn
SVNPar ent Pat h /usr/ | ocal / svn

our access control policy
Aut hzSVNAccessFi |l e / path/to/ access/file

only authenticated users nay access the repository
Requi re vali d-user

how to authenticate a user

Aut hType Basic

Aut hName " Subversi on repository”

Aut hUserFil e /path/to/users/file
</ Locati on>

A third very popular pattern is to allow a combination of authenticated and anonymous access. For ex-
ample, many administrators want to allow anonymous users to read certain repository directories, but
want only authenticated users to read (or write) more sensitive areas. In this setup, all users start out ac-
cessing the repository anonymously. If your access control policy demands areal username at any point,
Apache will demand authentication from the client. To do this, you use both the Sati sfy Any and
Requi re val i d- user directivestogether.

Example 6.3. A sample configuration for mixed authenticated/anonymous access.

<Location /repos>
DAV svn
SVNPar ent Pat h /usr/| ocal / svn

our access control policy
Aut hzSVNAccessFi |l e / path/to/access/file

try anonynous access first, resort to real
authentication if necessary.

Satisfy Any

Requi re vali d-user

how to authenticate a user

Aut hType Basic

Aut hName " Subversi on repository”

Aut hUserFil e /path/to/users/file
</ Locati on>

Once your basic Locat i on block is configured, you can create an access file and define some author-
ization rulesin it.

116

Server Configuration

The syntax of the access file is the same familiar one used by svnserve.conf and the runtime configura
tion files. Lines that start with a hash (#) are ignored. In its simplest form, each section names a reposit-
ory and path within it, and the authenticated usernames are the option names within each section. The
value of each option describes the user's level of access to the repository path: either r (read-only) or r w
(read-write). If the user is not mentioned at al, no accessis allowed.

To be more specific: the value of the section-names are either of the form [r epos- nane: pat h] or
the form [pat h] . If you're using the SVNPar ent Pat h directive, then it's important to specify the re-
pository names in your sections. If you omit them, then a section like [/ sone/ di r] will match the
path / sorre/ di r in every repository. If you're using the SVNPat h directive, however, then it's fine to
only define paths in your sections—after al, there's only one repository.

[cal c:/branches/ cal c/ bug-142]
harry rw
sally r

In this first example, the user harry has full read and write access on the /
branches/ cal ¢/ bug- 142 directory in the cal ¢ repository, but the user sal | y has read-only ac-
cess. Any other users are blocked from accessing this directory.

Of course, permissions are inherited from parent to child directory. That means that we can specify a
subdirectory with a different access policy for Saly:

[cal c:/branches/ cal ¢/ bug-142]
harry rw
sally r

give sally wite access only to the '"testing' subdir
[cal c:/branches/ cal c/ bug-142/testi ng]
sally = rw

Now Sally can write to the t est i ng subdirectory of the branch, but can still only read other parts.
Harry, meanwhile, continues to have complete read-write access to the whole branch.

It's also possible to explicitly deny permission to someone viainheritance rules, by setting the username
variable to nothing:

[cal c:/branches/ cal c/ bug-142]
harry rw
sally r

[cal c:/branches/ cal ¢/ bug- 142/ secret]
harry =

In this example, Harry has read-write access to the entire bug- 142 tree, but has absolutely no access at
all tothesecr et subdirectory withinit.

The thing to remember is that the most specific path always matches first. The mod_authz_svn module
tries to match the path itself, and then the parent of the path, then the parent of that, and so on. The net
effect is that mentioning a specific path in the accessfile will always override any permissions inherited
from parent directories.

By default, nobody has any access to the repository at all. That means that if you're starting with an
empty file, you'll probably want to give at least read permission to all users at the root of the repository.
Y ou can do this by using the asterisk variable (*), which means “all users’:

117

Server Configuration

Fr—
~
In=—

This is a common setup; notice that there's no repository name mentioned in the section name. This
makes all repositories world readable to al users, whether youre using SVNPath or
SVNPar ent Pat h. Once all users have read-access to the repositories, you can give explicit r w permis-
sion to certain users on specific subdirectories within specific repositories.

The asterisk variable (*) is also worth special mention here: it's the only pattern which matches an an-
onymous user. If you've configured your Locat i on block to allow a mixture of anonymous and au-
thenticated access, all users start out accessing Apache anonymously. mod_authz_svn looks for a *
value defined for the path being accessed; if it can't find one, then Apache demands real authentication
from the client.

The access file also allows you to define whole groups of users, much like the Unix / et ¢/ gr oup file:

[gr oups]

cal c-devel opers = harry, sally, joe

pai nt - devel opers = frank, sally, jane

everyone = harry, sally, joe, frank, sally, jane

Groups can be granted access control just like users. Distinguish them with an “at” (@ prefix:

[cal c:/projects/calc]
@al c-devel opers = rw

[pai nt:/projects/paint]
@ai nt - devel opers = rw
jane =r

Groups can aso be defined to contain other groups:

[groups]

cal c-devel opers = harry, sally, joe

pai nt - devel opers = frank, sally, jane

everyone = @al c-devel opers, @aint-devel opers

...and that's pretty much all thereistoit.

Disabling Path-based Checks

The mod_dav_svn module goes through a lot of work to make sure that data you've marked
“unreadable” doesn't get accidentally leaked. This means that it needs to closely monitor all of the paths
and file-contents returned by commands like svn checkout or svn update commands. If these com-
mands encounter a path that isn't readable according to some authorization policy, then the path is typic-
ally omitted altogether. In the case of history or rename tracing—e.g. running a command like svn cat -r
OLD foo.c on afile that was renamed long ago—the rename tracking will simply halt if one of the ob-
ject'sformer names is determined to be read-restricted.

All of this path-checking can sometimes be quite expensive, especially in the case of svn log. When re-
trieving alist revisions, the server looks at every changed path in each revision and checks it for readab-
ility. If an unreadable path is discovered, then it's omitted from the list of the revision's changed paths

118

Server Configuration

(normally seen with the - - ver bose option), and the whole log message is suppressed. Needless to
say, this can be time-consuming on revisions that affect alarge number of files. Thisisthe cost of secur-
ity: even if you haven't configured a module like mod_authz_svn at al, the mod_dav_svh module is
still asking Apache httpd to run authorization checks on every path. The mod_dav_svn module has no
idea what authorization modules have been installed, so all it can do is ask Apache to invoke whatever
might be present.

On the other hand, there's also an escape-hatch of sorts, one which alows you to trade security features
for speed. If you're not enforcing any sort of per-directory authorization (i.e. not using mod_authz_svn
or similar module), then you can disable al of this path-checking. In your ht t pd. conf file, use the
SVNPat hAut hz directive:

Example 6.4. Disabling path checks altogether

<Location /repos>
DAV svn
SVNPar ent Path /usr/ | ocal / svn

SVNPat hAut hz of f
</ Locati on>

The SVNPat hAut hz directive is “on” by default. When set “off”, all path-based authorization check-
ing isdisabled; mod_dav_svn stops invoking authorization checks on every path it discovers.

Extra Goodies

We've covered most of the authentication and authorization options for Apache and mod_dav_svn. But
there are afew other nice features that Apache provides.

Repository Browsing

One of the most useful benefits of an Apache/WebDAV configuration for your Subversion repository is
that the youngest revisions of your versioned files and directories are immediately available for viewing
via a regular web browser. Since Subversion uses URLS to identify versioned resources, those URLS
used for HTTP-based repository access can be typed directly into a Web browser. Y our browser will is-
sue a GET request for that URL, and based on whether that URL represents a versioned directory or file,
mod_dav_svn will respond with adirectory listing or with file contents.

Since the URLs do not contain any information about which version of the resource you wish to see,
mod_dav_svn will always answer with the youngest version. This functionality has the wonderful side-
effect that you can pass around Subversion URLS to your peers as references to documents, and those
URLSs will always point at the latest manifestation of that document. Of course, you can even use the
URLSs as hyperlinks from other web sites, too.

You generally will get more use out of URLS to versioned files—after all, that's where the interesting
content tends to lie. But you might have occasion to browse a Subversion directory listing, where you'll
quickly note that the generated HTML used to display that listing is very basic, and certainly not inten-
ded to be aesthetically pleasing (or even interesting). To enable customization of these directory dis-
plays, Subversion provides an XML index feature. A single SVNI ndex XSLT directive in your reposit-
ory'sLocat i on block of ht t pd. conf will instruct mod_dav_svn to generate XML output when dis-
playing adirectory listing, and to reference the XSLT stylesheet of your choice:

119

Server Configuration

<Location /svn>
DAV svn
SVNPar ent Pat h /usr/ | ocal / svn
SVNI ndexXSLT "/ svni ndex. xsl "

</ I:bcat i on>

Using the SVNI ndex XSLT directive and a creative XSLT stylesheet, you can make your directory list-
ings match the color schemes and imagery used in other parts of your website. Or, if you'd prefer, you
can use the sample stylesheets provided in the Subversion source distribution'st ool s/ xsl t/ direct-
ory. Keep in mind that the path provided to the SVNI ndexXSLT directory is actually a URL
path—browsers need to be able to read your stylesheets in order to make use of them!

Can | view older revisions?
With an ordinary web browser? In one word: nope. At least, not with mod_dav_svn as your only tool.

Y our web browser only speaks ordinary HTTP. That means it only knows how to GET public URLS, which
represent the latest versions of files and directories. According to the WebDAV/DeltaV spec, each server
defines a private URL syntax for older versions of resources, and that syntax is opague to clients. To find an
older version of afile, aclient must follow a specific procedure to “discover” the proper URL; the procedure
involves issuing a series of WebDAV PROPFIND requests and understanding DeltaV concepts. This is
something your web browser ssmply can't do.

So to answer the question, one obvious way to see older revisions of files and directories is by passing the -
-revi si on argument to the svn list and svn cat commands. To browse old revisions with your web
browser, however, you can use third-party software. A good example of this is ViewVC (ht-
tp:/Iviewvc.tigris.org/). ViewV C was originally written to display CV S repositories through the web, "and the
latest bleeding-edge versions (at the time of writing) are able to understand Subversion repositories as well.

Other Features

Severa of the features aready provided by Apache in its role as a robust Web server can be leveraged
for increased functionality or security in Subversion as well. Subversion communicates with Apache us-
ing Neon, which isageneric HTTP/WebDAYV library with support for such mechanisms as SSL (the Se-
cure Socket Layer, discussed earlier) and Deflate compression (the same a gorithm used by the gzip and
PKZIP programs to “shrink” files into smaller chunks of data). You need only to compile support for
the features you desire into Subversion and Apache, and properly configure the programs to use those
features.

Deflate compression places a small burden on the client and server to compress and decompress network
transmissions as a way to minimize the size of the actual transmission. In cases where network band-
width is in short supply, this kind of compression can greatly increase the speed at which communica-
tions between server and client can be sent. In extreme cases, this minimized network transmission
could be the difference between an operation timing out or completing successfully.

Less interesting, but equally useful, are other features of the Apache and Subversion relationship, such
as the ability to specify a custom port (instead of the default HTTP port 80) or a virtual domain name by
which the Subversion repository should be accessed, or the ability to access the repository through a
proxy. These things are all supported by Neon, so Subversion gets that support for free.

Finally, because mod_dav_svn is speaking a semi-complete dialect of WebDAV/DeltaV, it's possible to
access the repository via third-party DAV clients. Most modern operating systems (Win32, OS X, and
Linux) have the built-in ability to mount a DAV server as a standard network “share”. Thisis acomplic-

"Back then, it was called “ViewCVS'.

120

http://viewvc.tigris.org/
http://viewvc.tigris.org/

Server Configuration

ated topic; for details, read Appendix B, WebDAYV and Autoversioning.

Supporting Multiple Repository Access Meth-

ods

Y ou've seen how a repository can be accessed in many different ways. But is it possible—or safe—for
your repository to be accessed by multiple methods simultaneously? The answer is yes, provided you
use a bit of foresight.

At any given time, these processes may require read and write access to your repository:

» regular system users using a Subversion client (as themselves) to access the repository directly via
file://l URLs;

* regular system users connecting to SSH-spawned private svnserve processes (running as them-
selves) which access the repository;

* ansvnserve process—either adaemon or one launched by inetd—running as a particular fixed user;

e an Apache httpd process, running as a particular fixed user.

The most common problem administrators run into is repository ownership and permissions. Does every
process (or user) in the previous list have the rights to read and write the Berkeley DB files? Assuming
you have a Unix-like operating system, a straightforward approach might be to place every potential re-
pository user into a new svn group, and make the repository wholly owned by that group. But even
that's not enough, because a process may write to the database files using an unfriendly umask—one that
prevents access by other users.

So the next step beyond setting up a common group for repository users is to force every repository-ac-
cessing process to use a sane umask. For users accessing the repository directly, you can make the svn
program into a wrapper script that first sets umask 002 and then runs the real svn client program. Y ou
can write a similar wrapper script for the svnserve program, and add a umask 002 command to
Apache's own startup script, apachect | . For example:

$ cat /usr/bin/svn
#!/ bi n/ sh

umask 002
fusr/bin/svn-real "$@

Another common problem is often encountered on Unix-like systems. As arepository is used, Berkeley
DB occasionally creates new log files to journa its actions. Even if the repository is wholly owned by
the svn group, these newly created files won't necessarily be owned by that same group, which then cre-
ates more permissions problems for your users. A good workaround is to set the group SUID bit on the
repository's db directory. This causes al newly-created log files to have the same group owner as the
parent directory.

Once you've jumped through these hoops, your repository should be accessible by all the necessary pro-
cesses. It may seem a bit messy and complicated, but the problems of having multiple users sharing
write-access to common files are classic ones that are not often elegantly solved.

Fortunately, most repository administrators will never need to have such a complex configuration. Users

121

Server Configuration

who wish to access repositories that live on the same machine are not limited tousing fi | e: // access
URLs—they can typically contact the Apache HTTP server or svnserve using | ocal host for the
server name in their htt p: // or svn:// URLs. And to maintain multiple server processes for your
Subversion repositories is likely to be more of a headache than necessary. We recommend you choose
the server that best meets your needs and stick with it!

The svn+ssh:// server checklist

It can be quite tricky to get a bunch of users with existing SSH accounts to share a repository without permis-
sions problems. If you're confused about all the things that you (as an administrator) need to do on a Unix-like
system, here's a quick checklist that resummarizes some of things discussed in this section:

e All of your SSH users need to be able to read and write to the repository. Put all the SSH users into a

single group. Make the repository wholly owned by that group, and set the group permissions to read/
write,

* Your users need to use a sane umask when accessing the repository. Make sure that svnserve (/
usr/ bi n/ svnserve, or wherever it lives in $PATH) is actually a wrapper script which sets umask
002 and executes the real svnserve binary. Take similar measures when using svnlook and svnadmin.
Either run them with a sane umask, or wrap them as described above.

122

Chapter 7. Advanced Topics

If you've been reading this book chapter by chapter, from start to finish, you should by now have ac-
quired enough knowledge to use the Subversion client to perform the most common version control op-
erations. Y ou understand how to checkout a working copy from a Subversion repository. Y ou are com-
fortable with submitting and receiving changes using the svn commit and svn update functions. Y ou've
probably even developed a reflex which causes you to run the svn status command almost uncon-
scioudly. For all intents and purposes, you are ready to use Subversion in atypical environment.

But the Subversion feature set doesn't stop at “common version control operations’.

This chapter highlights some of Subversion's features that aren't quite so regularly used. In it, we will
discuss Subversion's property (or “metadata’) support, and how to modify Subversion's default behavi-
ors by tweaking its run-time configuration area. We will describe how you can use externals definitions
to instruct Subversion to pull data from multiple repositories. We'll cover in detail some of the additional
client- and server-side tools that are part of the Subversion distribution.

Before reading this chapter, you should be familiar with the basic file and directory versioning capabilit-
ies of Subversion. If you haven't already read about those, or if you need a refresher, we recommend that
you check out Chapter 2, Basic Concepts and Chapter 3, Guided Tour. Once you've mastered the basics
and consumed this chapter, you'll be a Subversion power-user!

Runtime Configuration Area

Subversion provides many optional behaviors that can be controlled by the user. Many of these options
are of the kind that a user would wish to apply to all Subversion operations. So, rather than forcing users
to remember command-line arguments for specifying these options, and to use them for each and every
operation they perform, Subversion uses configuration files, segregated into a Subversion configuration
area.

The Subversion configuration area is a two-tiered hierarchy of option names and their values. Usualy,
this boils down to a special directory that contains configuration files (the first tier), which are just text
filesin standard INI format (with “sections’ providing the second tier). These files can be easily edited
using your favorite text editor (such as Emacs or vi), and contain directives read by the client to determ-
ine which of several optional behaviors the user prefers.

Configuration Area Layout

The first time that the svn command-line client is executed, it creates a per-user configuration area. On
Unix-like systems, this area appears as a directory named . subver si on in the user's home directory.
On Win32 systems, Subversion creates a folder named Subver si on, typicaly inside the Appl i ca-
tion Data area of the user's profile directory (which, by the way, is usualy a hidden directory).
However, on this platform the exact location differs from system to system, and is dictated by the Win-
dows registry. L We will refer to the per-user configuration area using its Unix name, . subver si on.

In addition to the per-user configuration area, Subversion also recognizes the existence of a system-wide
configuration area. This gives system administrators the ability to establish defaults for al users on a
given machine. Note that the system-wide configuration area does not alone dictate mandatory
policy—the settings in the per-user configuration area override those in the system-wide one, and com-
mand-line arguments supplied to the svn program have the final word on behavior. On Unix-like plat-
forms, the system-wide configuration area is expected to be the / et ¢/ subver si on directory; on
Windows machines, it looks for a Subver si on directory inside the common Appl i cati on Data

The APPDATA environment variable points to the Application Data aea so you can aways refer to this folder as
Y%APPDATA% Subver si on.

123

Advanced Topics

location (again, as specified by the Windows Registry). Unlike the per-user case, the svn program does
not attempt to create the system-wide configuration area.

The configuration area currently contains three files—two configuration files (conf i g and ser ver s),
and a README. t xt file which describes the INI format. At the time of their creation, the files contain
default values for each of the supported Subversion options, mostly commented out and grouped with
textual descriptions about how the values for the key affect Subversion's behavior. To change a certain
behavior, you need only to load the appropriate configuration file into a text editor, and modify the de-
sired option's value. If at any time you wish to have the default configuration settings restored, you can
simply remove (or rename) your configuration directory and then run some innocuous svn command,
such as svn --version. A new configuration directory with the default contents will be created.

The per-user configuration area also contains a cache of authentication data. The aut h directory holds a
set of subdirectories that contain pieces of cached information used by Subversion's various supported
authentication methods. This directory is created in such away that only the user herself has permission
to read its contents.

Configuration and the Windows Registry

In addition to the usual INI-based configuration area, Subversion clients running on Windows platforms
may also use the Windows registry to hold the configuration data. The option names and their values are
the same as in the INI files. The “file/section” hierarchy is preserved as well, though addressed in a
dightly different fashion—in this schema, files and sections are just levelsin the registry key tree.

Subversion looks for system-wide configuration values under the
HKEY _LOCAL_MACHI NE\ Sof t war e\ Ti gri s. or g\ Subver si on key. For example, the gl ob-
al - i gnor es option, which isin the m scel | any section of the confi g file, would be found at
HKEY_LOCAL_MACHI NE\ Sof t war e\ Ti gri s. or g\ Subver si on\ Confi g\ M scel | any\ gl
obal -i gnores. Per-user configuration values should be stored under
HKEY_CURRENT_USER\ Sof t war e\ Ti gri s. or g\ Subver si on.

Registry-based configuration options are parsed before their file-based counterparts, so are overridden
by values found in the configuration files. In other words, configuration priority is granted in the follow-
ing order on a Windows system:

1. Command-line options

The per-user INI files

The per-user Registry values

A w D

The system-wide INI files

5. The system-wide Registry values

Also, the Windows Registry doesn't really support the notion of something being “commented out”.
However, Subversion will ignore any option key whose name begins with a hash (#) character. This al-
lows you to effectively comment out a Subversion option without deleting the entire key from the Re-
gistry, obviously simplifying the process of restoring that option.

The svn command-line client never attempts to write to the Windows Registry, and will not attempt to
create a default configuration area there. You can create the keys you need using the REGEDI T pro-
gram. Alternatively, you can create a . r eg file, and then double-click on that file from the Explorer
shell, which will cause the data to be merged into your registry.

Example 7.1. Sample Registration Entries (.reg) File.

124

Advanced Topics

REGEDI T4
[HKEY_LOCAL_MACHI NE\ Sof t war e\ Ti gri s. or g\ Subver si on\ Ser ver s\ gr oups]

[HKEY _LOCAL MACHI NE\ Sof t war e\ Ti gri s. or g\ Subver si on\ Ser ver s\ gl obal]
"#htt p- proxy-host"=""
"#htt p- proxy-port"=""
"#ht t p- pr oxy- user nang"
"#htt p- proxy- password”"=""

"#ht t p- proxy-exceptions"=""
"#htt p-timeout"="0"

"#htt p- conpressi on"="yes"
"#neon- debug- mask"=""
"#ssl-authority-files"=""
"#ssl -trust-default-ca"=""
"#ssl-client-cert-file"=""
"#ssl-client-cert-password"=""

[HKEY_CURRENT _USER\ Sof t war e\ Ti gri s. or g\ Subver si on\ Confi g\ aut h]
"#st ore-aut h-creds"="no"

[HKEY_CURRENT_USER\ Sof t war e\ Ti gri s. or g\ Subver si on\ Confi g\ hel per s]
"#editor-cnmd"="not epad”

n #dl f f - Cn'd" :ll n

"#di ff3-cmd"=""

"#di ff 3- has- programarg"=""

[HKEY _CURRENT _USER\ Sof t war e\ Ti gri s. or g\ Subver si on\ Confi g\ ni scel | any]
"#gl obal -ignores"="*.0 *.lo *.la ## .*.rej] *.rej .*~*~ . #* DS Store"
"#l og- encodi ng"=""
"#use-commit-tines"=

"#tenpl ate-root" =
"#enabl e- aut o- props”

[HKEY_CURRENT_USER\ Sof t war e\ Ti gri s. or g\ Subver si on\ Confi g\ t unnel s]
[HKEY_CURRENT_USER\ Sof t war e\ Ti gri s. or g\ Subver si on\ Confi g\ aut o- pr ops]

The previous example shows the contents of a . r eg file which contains some of the most commonly
used configuration options and their default values. Note the presence of both system-wide (for network
proxy-related options) and per-user settings (editor programs and password storage, among others). Also
note that all the options are effectively commented out. Y ou need only to remove the hash (#) character
from the beginning of the option names, and set the values as you desire.

Configuration Options

In this section, we will discuss the specific run-time configuration options that are currently supported
by Subversion.

Servers

The ser ver s file contains Subversion configuration options related to the network layers. There are
two specia section names in this file—gr oups and gl obal . The gr oups section is essentialy a
cross-reference table. The keys in this section are the names of other sections in the file; their values are
globs—textual tokens which possibly contain wildcard characters—that are compared against the host-
names of the machine to which Subversion requests are sent.

125

Advanced Topics

[gr oups]
beani e- babi es = *.red-bean. com
col | abnet = svn. col | ab. net

[beani e- babi es]

[col | abnet]

When Subversion is used over a network, it attempts to match the name of the server it is trying to reach
with a group name under the gr oups section. If amatch is made, Subversion then looks for a section in
the ser ver s file whose name is the matched group's name. From that section it reads the actual net-
work configuration settings.

The gl obal section contains the settings that are meant for al of the servers not matched by one of the
globs under the gr oups section. The options available in this section are exactly the same as those val-
id for the other server sections in the file (except, of course, the special gr oups section), and are as fol-
lows:

ht t p- pr oxy- host
This specifies the hostname of the proxy computer through which your HTTP-based Subversion requests must
pass. It defaults to an empty value, which means that Subversion will not attempt to route HTTP requests
through a proxy computer, and will instead attempt to contact the destination machine directly.

ht t p- pr oxy- port
This specifies the port number on the proxy host to use. It defaults to an empty value.

ht t p- pr oxy- user nane
This specifies the username to supply to the proxy machine. It defaults to an empty value.

ht t p- pr oxy- password
This specifies the password to supply to the proxy machine. It defaults to an empty value.

http-ti neout
This specifies the amount of time, in seconds, to wait for a server response. If you experience problems with a
slow network connection causing Subversion operations to timeout, you should increase the value of this op-
tion. The default value is 0, which instructs the underlying HTTP library, Neon, to use its default timeout set-
ting.

ht t p- conpr essi on
This specifies whether or not Subversion should attempt to compress network requests made to DAV -ready
servers. The default value is yes (though compression will only occur if that capability is compiled into the
network layer). Set thisto no to disable compression, such as when debugging network transmissions.

neon- debug- mask
Thisis an integer mask that the underlying HTTP library, Neon, uses for choosing what type of debugging out-
put to yield. The default value is 0, which will silence all debugging output. For more information about how
Subversion makes use of Neon, see Chapter 8, Developer |nformation.

ssl-authority-files
Thisis a semicolon-delimited list of paths to files containing certificates of the certificate authorities (or CAS)
that are accepted by the Subversion client when accessing the repository over HTTPS.

ssl-trust-default-ca
Set this variable to yes if you want Subversion to automatically trust the set of default CAs that ship with
OpenSSL.

126

Advanced Topics

ssl-client-cert-file
If ahost (or set of hosts) requires an SSL client certificate, you'll normally be prompted for a path to your certi-
ficate. By setting this variable to that same path, Subversion will be able to find your client certificate automat-
ically without prompting you. There's no standard place to store your certificate on disk; Subversion will grab it
from any path you specify.

ssl-client-cert-password
If your SSL client certificate file is encrypted by a passphrase, Subversion will prompt you for the passphrase
whenever the certificate is used. If you find this annoying (and don't mind storing the password in the ser v-
er s file), then you can set this variable to the certificate's passphrase. Y ou won't be prompted anymore.

Config

The confi g file contains the rest of the currently available Subversion run-time options, those not re-
lated to networking. There are only afew options in use at thistime, but they are again grouped into sec-
tions in expectation of future additions.

The aut h section contains settings related to Subversion's authentication and authorization against the
repository. It contains:

st or e- passwor ds
This instructs Subversion to cache, or not to cache, passwords that are supplied by the user in response to server
authentication challenges. The default value is yes. Set this to no to disable this on-disk password caching.
You can override this option for a single instance of the svn command using the - - no- aut h- cache com-
mand-line parameter (for those subcommands that support it). For more information, see the section called
“Client Credentials Caching”.

st ore- aut h-creds
This setting is the same as st or e- passwor ds, except that it enables or disables disk-caching of all authen-
tication information: usernames, passwords, server certificates, and any other types of cacheable credentials.

The hel per s section controls which external applications Subversion uses to accomplish its tasks.
Valid optionsin this section are:

edi tor-cnd
This specifies the program Subversion will use to query the user for alog message during a commit operation,
such as when using svn commit without either the - - mressage (-m or - - fi | e (- F) options. This program
is also used with the svn propedit command—a temporary file is populated with the current value of the prop-
erty the user wishes to edit, and the edits take place right in the editor program (see the section called
“Properties’). This option's default value is empty. The order of priority for determining the editor command is:

1. Command-line option - - edi t or - cnd

2. Environment variable SYN_EDI TOR

3. Configuration option edi t or - cnrd

4. Environment variable VI SUAL

5. Environment variable EDI TOR

6. Possibly, adefault value built in to Subversion (not present in the official builds)

The value of any of these options or variablesis (unlike di f f - cnd) the beginning of a command line to be ex-
ecuted by the shell. Subversion appends a space and the pathname of the temporary file to be edited. The editor

127

Advanced Topics

should modify the temporary file and return a zero exit code to indicate success.

diff-cnd
This specifies the absolute path of a differencing program, used when Subversion generates “diff” output (such
as when using the svn diff command). By default Subversion uses an interna differencing library—setting this
option will cause it to perform this task using an external program. See the section called “Using External Dif-
ferencing Tools’ for more details on using such programs.

di ff3-cnd
This specifies the absolute path of a three-way differencing program. Subversion uses this program to merge
changes made by the user with those received from the repository. By default Subversion uses an internal differ-
encing library—setting this option will cause it to perform this task using an external program. See the section
called “Using Externa Differencing Tools’ for more details on using such programs.

di ff 3- has-programarg
This flag should be set to true if the program specified by the di ff3-cnd option accepts a -
- di f f - pr ogr amcommand-line parameter.

Thet unnel s section allows you to define new tunnel schemes for use with svnserveand svn: // cli-
ent connections. For more details, see the section called “ SSH authentication and authorization”.

Them scel | any section is where everything that doesn't belong el sewhere winds up. 2 I this section,
you can find:

gl obal -i gnores
When running the svn status command, Subversion lists unversioned files and directories along with the ver-
sioned ones, annotating them with a? character (see the section called “svn status’). Sometimes, it can be an-
noying to see uninteresting, unversioned items—for example, object files that result from a program's compila
tion—in this display. The gl obal - i gnor es optionisalist of whitespace-delimited globs which describe the
names of files and directories that Subversion should not display unless they are versioned. The default value is
* o *.lo *.la## .*.rej *.rej .*~*~ #* DS Store.

Aswell as svn status, the svn add and svn import commands al so ignore files that match the list when they are
scanning a directory. Y ou can override this behaviour for a single instance of any of these commands by expli-
citly specifying the file name, or by using the - - no- i gnor e command-line flag.

For information on more fine-grained control of ignored items, see the section called “svn: i gnor e”.

enabl e- aut o- props
This instructs Subversion to automatically set properties on newly added or imported files. The default valueis
no, so set thisto yes to enable Auto-props. The aut o- pr ops section of this file specifies which properties
are to be set on which files.

| og- encodi ng
This variable sets the default character set encoding for commit log messages. It's a permanent form of the -
- encodi ng option (see the section called “svn Switches’). The Subversion repository stores log messages in
UTF-8, and assumes that your log message is written using your operating system's native locale. Y ou should
specify adifferent encoding if your commit messages are written in any other encoding.

use-comm t-tines
Normally your working copy files have timestamps that reflect the last time they were touched by any process,
whether that be your own editor or by some svn subcommand. Thisis generally convenient for people develop-
ing software, because build systems often look at timestamps as a way of deciding which files need to be re-
compiled.

In other situations, however, it's sometimes nice for the working copy files to have timestamps that reflect the

2Anyone for potluck dinner?

128

Advanced Topics

last time they were changed in the repository. The svn export command aways places these “last-commit
timestamps” on trees that it produces. By setting this config variable to yes, the svn checkout, svn update,
svn switch, and svn revert commands will also set last-commit timestamps on files that they touch.

The aut o- pr ops section controls the Subversion client's ability to automatically set properties on files
when they are added or imported. It contains any number of key-value pairs in the format PATTERN =
PROPNAME=PROPVAL UE where PATTERN is a file pattern that matches a set of filenames and the rest
of the line is the property and its value. Multiple matches on a file will result in multiple propsets for
that file; however, there is no guarantee that auto-props will be applied in the order in which they arelis-
ted in the config file, so you can't have one rule “override” another. You can find several examples of
auto-props usage in the conf i g file. Lastly, don't forget to set enabl e- aut o- pr ops toyes inthe
m scel | any section if you want to enable auto-props.

Properties

We've already covered in detail how Subversion stores and retrieves various versions of files and direct-
oriesin its repository. Whole chapters have been devoted to this most fundamental piece of functionality
provided by the tool. And if the versioning support stopped there, Subversion would still be complete
from aversion control perspective. But it doesn't stop there.

In addition to versioning your directories and files, Subversion provides interfaces for adding, modify-
ing, and removing versioned metadata on each of your versioned directories and files. We refer to this
metadata as properties, and they can be thought of as two-column tables that map property names to ar-
bitrary values attached to each item in your working copy. Generally speaking, the names and values of
the properties can be whatever you want them to be, with the constraint that the names must be human-
readable text. And the best part about these propertiesis that they, too, are versioned, just like the textual
contents of your files. You can modify, commit, and revert property changes as easily as committing
textual changes. And you receive other peopl€e's property changes as you update your working copy.

Other Propertiesin Subversion

Properties show up elsewhere in Subversion, too. Just as files and directories may have arbitrary property
names and values attached to them, each revision as a whole may have arbitrary properties attached to it. The
same constraints apply—human-readable, text names and anything-you-want, binary values—except that re-
vision properties are not versioned. See the section called “Unversioned Properties’ for more information on
these unversioned properties.

In this section, we will examine the utility—both to users of Subversion, and to Subversion itself—of
property support. You'll learn about the property-related svn subcommands, and how property modifica-
tions affect your normal Subversion workflow. Hopefully, you'll be convinced that Subversion proper-
ties can enhance your version control experience.

Why Properties?

Properties can be very useful additions to your working copy. In fact, Subversion itself uses properties to
house special information, and as away to denote that certain special processing might be needed. Like-
wise, you can use properties for your own purposes. Of course, anything you can do with properties you
could also do using regular versioned files, but consider the following example of Subversion property
use.

Say you wish to design awebsite that houses many digital photos, and displays them with captions and a
datestamp. Now, your set of photos is constantly changing, so you'd like to have as much of this site
automated as possible. These photos can be quite large, so as is common with sites of this nature, you

129

Advanced Topics

want to provide smaller thumbnail images to your site visitors. You can do this with traditiona files.
That is, you can have your i magel123. j pg and ani magel23-t hunbnail . j pg side-by-sidein a
directory. Or if you want to keep the filenames the same, you might have your thumbnails in a different
directory, liket hunbnai | s/ i magel23. j pg. You can aso store your captions and datestamps in a
similar fashion, again separated from the origina image file. Soon, your tree of files is a mess, and
grows in multiples with each new photo added to the site.

Now consider the same setup using Subversion's file properties. Imagine having asingle image file, i m

agel23. | pg, and then properties set on that file named capt i on, dat est anp, and even t hunb-

nai | . Now your working copy directory looks much more manageable—in fact, it looks like there are
nothing but image files in it. But your automation scripts know better. They know that they can use svn
(or better yet, they can use the Subversion language bindings—see the section called “Using Languages
Other than C and C++") to dig out the extra information that your site needs to display without having to
read an index file or play path manipulation games.

How (and if) you use Subversion properties is up to you. As we mentioned, Subversion has it own uses
for properties, which we'll discuss a little later in this chapter. But first, let's discuss how to manipulate
properties using the svn program.

Manipulating Properties

The svn command affords a few ways to add or modify file and directory properties. For properties with
short, human-readable values, perhaps the simplest way to add a new property is to specify the property
name and value on the command-line of the propset subcommand.

$ svn propset copyright '(c) 2003 Red-Bean Software' calc/button.c
property 'copyright' set on 'calc/button.c'
$

But we've been touting the flexibility that Subversion offers for your property values. And if you are
planning to have a multi-line textual, or even binary, property value, you probably do not want to supply
that value on the command-line. So the propset subcommand takesa- -fi | e (- F) option for specify-
ing the name of afile which contains the new property value.

$ svn propset license -F /path/to/LI CENSE cal c/button.c
property 'license' set on 'calc/button.c'
$

There are some restrictions on the names you can use for properties. A property name must start with a
letter, acolon (:), or an underscore (_); after that, you can also use digits, hyphens (-), and periods (.).
3

In addition to the propset command, the svn program supplies the propedit command. This command
uses the configured editor program (see the section called “Config”) to add or modify properties. When
you run the command, svn invokes your editor program on a temporary file that contains the current
value of the property (or which is empty, if you are adding a new property). Then, you just modify that
value in your editor program until it represents the new value you wish to store for the property, save the
temporary file, and then exit the editor program. If Subversion detects that you've actually changed the
existing value of the property, it will accept that as the new property value. If you exit your editor
without making any changes, no property modification will occur.

$ svn propedit copyright calc/button.c ### exit the editor w thout changes

81 you're familiar with XML, thisis pretty much the ASCI| subset of the syntax for XML "Name".

130

Advanced Topics

No changes to property 'copyright' on 'calc/button.c'
$

We should note that, as with other svn subcommands, those related to properties can act on multiple
paths at once. This enables you to modify properties on whole sets of files with a single command. For
example, we could have done;

$ svn propset copyright '(c) 2002 Red-Bean Software' calc/*
property 'copyright' set on 'cal c/Mkefile'

property 'copyright' set on 'calc/button.c’

property 'copyright' set on 'calc/integer.c'

$

All of this property adding and editing isn't really very useful if you can't easily get the stored property
value. So the svn program supplies two subcommands for displaying the names and values of properties
stored on files and directories. The svn proplist command will list the names of properties that exist on
a path. Once you know the names of the properties on the node, you can request their values individually
using svn propget. This command will, given a path (or set of paths) and a property name, print the
value of the property to the standard output stream.

$ svn proplist calc/button.c
Properties on 'calc/button.c'

copyri ght

i cense
$ svn propget copyright calc/button.c
(c) 2003 Red-Bean Software

There's even a variation of the proplist command that will list both the name and value of al of the
properties. Simply supply the- - ver bose (- v) option.

$ svn proplist --verbose cal c/button.c
Properties on 'calc/button.c':

copyright : (c) 2003 Red-Bean Software

I | Cense s e g ——————————————————— e ——————
Copyright (c) 2003 Red-Bean Software. All rights reserved.

Redi stri bution and use in source and binary forns, with or without
nodi fication, are pernmitted provided that the follow ng conditions
are met:

1. Redistributions of source code nmust retain the above copyri ght
notice, this list of conditions, and the recipe for Fitz's fanous
red- beans-and-ri ce.

The last property-related subcommand is propdel. Since Subversion allows you to store properties with
empty values, you can't remove a property altogether using propedit or propset. For example, this com-
mand will not yield the desired effect:

$ svn propset |icense cal c/button.c
property 'license' set on 'calc/button.c'
$ svn proplist --verbose cal c/button.c
Properties on 'calc/button.c':

131

Advanced Topics

copyright : (c) 2003 Red-Bean Software
5 l'icense :

Y ou need to use the propdel command to delete properties altogether. The syntax is similar to the other
property commands:;

$ svn propdel license calc/button.c

property 'license' deleted from'calc/button.c'.
$ svn proplist --verbose calc/button.c
Properties on 'calc/button.c':

s copyright : (c) 2003 Red-Bean Software

Now that you are familiar with al of the property-related svn subcommands, let's see how property
modifications affect the usual Subversion workflow. As we mentioned earlier, file and directory proper-
ties are versioned, just like your file contents. As a result, Subversion provides the same opportunities
for merging—in cleanly or conflicting fashions—someone else's modifications into your own.

M odifying Revision Properties

Remember those unversioned revision properties? Y ou can modify those, too, with the svn program. Simply
add the - - r evpr op command-line parameter, and specify the revision whose property you wish to modify.
Since revisions are global, you don't need to specify a path in this case as long as you are positioned in the
working copy of the repository whose revision property)/ou wish to modify. For example, you might want to
replace the commit log message of an existing revision.

$ svn propset svn:log '* button.c: Fix a conpiler warning.' -rll --revprop
property 'svn:log' set on repository revision '11'
$

Note that the ability to modify these unversioned properties must be explicitly added by the repository admin-
istrator (see the section called “Hook Scripts’). Since the properties aren't versioned, you run the risk of losing
information if you aren't careful with your edits. The repository administrator can setup methods to protect
against thisloss, and by default, modification of unversioned propertiesis disabled.

And as with file contents, your property changes are local modifications, only made permanent when
you commit them to the repository with svn commit. Your property changes can be easily unmade,
too—the svn revert command will restore your files and directories to their un-edited states, contents,
properties, and all. Also, you can receive interesting information about the state of your file and direct-
ory properties by using the svn status and svn diff commands.

$ svn status cal c/button.c
M cal c/button.c
$ svn diff calc/button.c
Property changes on: calc/button.c

Nane: copyri ght
+ (c¢) 2003 Red- Bean Sof tware

4Fixing spelling errors, grammatical gotchas, and “just-plain-wrongness’ in commit log messages is perhaps the most common use case for
the- - r evpr op option.

132

Advanced Topics

Notice how the status subcommand displays Min the second column instead of the first. That is because
we have modified the properties on cal ¢/ but t on. ¢, but not modified its textual contents. Had we
changed both, we would have seen Min the first column, too (see the section called “svn status’).

Property Conflicts

As with file contents, local property modifications can conflict with changes committed by someone else. If
you update your working copy directory and receive property changes on a versioned resource that clash with
your own, Subversion will report that the resource isin a conflicted state.

% svn update cal c
M cal c/ Makefile.in
C calc/button. c
gpdat ed to revision 143.

Subversion will also create, in the same directory as the conflicted resource, a file with a. pr ej extension
which contains the details of the conflict. Y ou should examine the contents of this file so you can decide how
to resolve the conflict. Until the conflict is resolved, you will see a Cin the second column of svn status out-
put for that resource, and attempts to commit your local modifications will fail.

$ svn status calc
C cal c/button.c
? cal c/button. c. prej
$ cat cal ¢/ button. c. prej
grop ‘linecount': user set to '1256', but update set to '1301'.

To resolve property conflicts, simply ensure that the conflicting properties contain the values that they should,
and then use the svn resolved command to alert Subversion that you have manually resolved the problem.

You might also have noticed the non-standard way that Subversion currently displays property differ-
ences. You can still run svn diff and redirect the output to create a usable patch file. The patch program
will ignore property patches—as arule, it ignores any noise it can't understand. This does unfortunately
mean that to fully apply a patch generated by svn diff, any property modifications will need to be ap-
plied by hand.

As you can see, the presence of property modifications has no outstanding effect on the typical Subver-
sion workflow. Your general patterns of updating your working copy, checking the status of your files
and directories, reporting on the modifications you have made, and committing those modifications to
the repository are completely immune to the presence or absence of properties. The svn program has
some additional subcommands for actually making property changes, but that is the only noticeable
asymmetry.

Special Properties

Subversion has no particular policy regarding properties—you can use them for any purpose. Subversion
asks only that you not use property names that begin with the prefix svn: . That's the namespace that it
sets aside for its own use. In fact, Subversion defines certain properties that have magical effects on the
files and directories to which they are attached. In this section, we'll untangle the mystery, and describe

133

Advanced Topics

how these special properties make your lifejust alittle easier.

svn; execut abl e

The svn: execut abl e property is used to control a versioned file's filesystem-level execute permis-
sion bit in a semi-automated way. This property has no defined values—its mere presence indicates a
desire that the execute permission bit be kept enabled by Subversion. Removing this property will re-
store full control of the execute bit back to the operating system.

On many operating systems, the ability to execute a file asa command is governed by the presence of an
execute permission bit. This bit usually defaults to being disabled, and must be explicitly enabled by the
user for each file that needs it. In a working copy, new files are being created all the time as new ver-
sions of existing files are received during an update. This means that you might enable the execute bit on
afile, then update your working copy, and if that file was changed as part of the update, its execute bit
might get disabled. So, Subversion provides the svn: execut abl e property as away to keep the ex-
ecute bit enabled.

This property has no effect on filesystems that have no concept of an executable permission bit, such as
FAT32 and NTFS. ° Also, although it has no defined values, Subversion will force its value to * when
setting this property. Finally, this property isvalid only on files, not on directories.

svn: m ne-type

Thesvn: m me-t ype property serves many purposes in Subversion. Besides being a general -purpose
storage location for a file's Multipurpose Internet Mail Extensions (MIME) classification, the value of
this property determines some behavioral characteristics of Subversion itself.

For example, if a file's svn: mi ne-type property is set to a non-text MIME type (generally,
something that doesn't begin with t ext / , though there are exceptions), Subversion will assume that the
file contains binary—that is, not human-readable—data. One of the benefits that Subversion typically
provides is contextual, line-based merging of changes received from the server during an update into
your working file. But for files believed to contain binary data, there is no concept of a “ling”. So, for
those files, Subversion does not attempt to perform contextual merges during updates. Instead, any time
you have locally modified a binary working copy file that is also being updated, your file is renamed
with a. or i g extension, and then Subversion stores a new working copy file that contains the changes
received during the update, but not your own local modifications, at the original filename. This behavior
is realy for the protection of the user against failed attempts at performing contextual merges on files
that simply cannot be contextually merged.

Also, if thesvn: mi me-t ype property is set, then the Subversion Apache module will use its value to
populate the Cont ent -t ype: HTTP header when responding to GET requests. This gives a crucia
clue about how to display afile when perusing your repository with aweb browser.

svn:ignore

The svn: i gnor e property contains a list of file patterns which certain Subversion operations will ig-
nore. Perhaps the most commonly used specia property, it works in conjunction with the gl obal -
i gnor es run-time configuration option (see the section called “Config”) to filter unversioned files and
directories out of commands svn status, svn add, and svn import.

The rationae behind the svn: i gnor e property is easily explained. Subversion does not assume that
every file or subdirectory in aworking copy directory isintended for version control. Resources must be
explicitly placed under Subversion's management using the svn add or svn import commands. As ares-
ult, there are often many resources in aworking copy that are not versioned.

Now, the svn status command displays as part of its output every unversioned file or subdirectory in a

5The Wi ndows filesystems use file extensions (such as. EXE, . BAT, and . COM) to denote executablefiles.

134

Advanced Topics

working copy that is not aready filtered out by the gl obal - i gnor es option (or its built-in default
value). Thisis done so that users can see if perhaps they've forgotten to add a resource to version con-
trol.

But Subversion cannot possibly guess the names of every resource that should be ignored. Also, quite
often there are things that should be ignored in every working copy of a particular repository. To force
every user of that repository to add patterns for those resources to their run-time configuration areas
would be not just a burden, but has the potential to clash with the configuration needs of other working
copies that the user has checked out.

The solution is to store ignore patterns that are unique to the resources likely to appear in a given direct-
ory with the directory itself. Common examples of unversioned resources that are basically unique to a
directory, yet likely to appear there, include output from program compilations. Or—to use an example
more appropriate to this book—the HTML, PDF, or PostScript files generated as the result of a conver-
sion of some source DocBook XML files to amore legible output format.

Ignore Patternsfor CVS Users

The Subversion svn: i gnor e property isvery similar in syntax and function to the CVS. cvsi gnor e file.
In fact, if you are migrating a CV S working copy to Subversion, you can directly migrate the ignore patterns
by using the . cvsi gnor e file asinput file to the svn propset command:

$ svn propset svn:ignore -F .cvsignore .
property 'svn:ignore' set on '.'
$

There are, however, some differences in the ways that CVS and Subversion handle ignore patterns. The two
systems use the ignore patterns at some different times, and there are slight discrepancies in what the ignore
patterns apply to. Also, Subversion does not recognize the use of the! pattern as a reset back to having no ig-
nore patterns at all.

For this purpose, the svn: i gnor e property is the solution. Its value is a multi-line collection of file
patterns, one pattern per line. The property is set on the directory in which you wish the patterns to be
applied. 6 For example, say you have the following output from svn status:

$ svn status calc

M cal c/button.c
cal ¢/ cal cul at or
cal c/data.c
cal ¢/ debug_| og
cal c/ debug_l 0g. 1
cal ¢/ debug_| 0g. 2. gz
cal ¢/ debug_| og. 3. gz

NN))))

In this example, you have made some property modifications to but t on. ¢, but in your working copy
you also have some unversioned files: the latest cal cul at or program that you've compiled from your
source code, a source file named dat a. ¢, and a set of debugging output log files. Now, you know that
your build system always results in the cal cul at or program being generated. ” And you know that
your test suite aways leaves those debugging log files lying around. These facts are true for all working
copies, not just your own. And you know that you aren't interested in seeing those things every time you
run svn status. So you use svn propedit svn:ignore calc to add some ignore patterns to the cal ¢ dir-
ectory. For example, you might add this as the new value of thesvn: i gnor e property:

5The patterns are strictly for that directory—they do not carry recursively into subdirectories.
“Isn't that the whole point of abuild system?

135

Advanced Topics

cal cul at or
debug_| og*

After you've added this property, you will now have alocal property modification on the cal ¢ direct-
ory. But notice what else is different about your svn status output:

$ svn status

M cal c
M cal c/button.c
? cal c/data.c

Now, all the cruft is missing from the output! Of course, those files are still in your working copy. Sub-
version is simply not reminding you that they are present and unversioned. And now with all the trivial
noise removed from the display, you are |eft with more interesting items—such as that source code file
that you probably forgot to add to version control.

If you want to see the ignored files, you can passthe - - no- i gnor e option to Subversion:

$ svn status --no-ignore
M cal c/button.c
cal c/ cal cul at or
cal c/data.c
cal ¢/ debug_I og
cal ¢/ debug |l og. 1
cal ¢/ debug_| 0g. 2. gz
cal ¢/ debug_Il og. 3. gz

—_—

The list of patterns to ignore is also used by svn add and svn import. Both of these operations involve
asking Subversion to begin managing some set of files and directories. Rather than force the user to pick
and choose which filesin atree she wishes to start versioning, Subversion uses the ignore patterns to de-
termine which files should not be swept into the version control system as part of alarger recursive addi-
tion or import operation.

svn: keywor ds

Subversion has the ability to substitute keywords—pieces of useful, dynamic information about a ver-
sioned file—into the contents of the file itself. Keywords generally describe information about the last
time the file was known to be modified. Because this information changes each time the file changes,
and more importantly, just after the file changes, it is a hassle for any process except the version control
system to keep the data completely up-to-date. Left to human authors, the information would inevitably
grow stale.

For example, say you have a document in which you would like to display the last date on which it was
modified. Y ou could burden every author of that document to, just before committing their changes, also
tweak the part of the document that describes when it was last changed. But sooner or later, someone
would forget to do that. Instead simply ask Subversion to perform keyword substitution on the Last -

ChangedDat e keyword. You control where the keyword is inserted into your document by placing a
keyword anchor at the desired location in the file. This anchor is just a string of text formatted as
$Keywor dNane$.

All keywords are case-sensitive where they appear as anchorsin files: you must use the correct capitaliz-
ation in order for the keyword to be expanded. Y ou should consider the value of the svn: keywor ds
property to be case-sensitive too—certain keyword names will be recognized regardless of case, but this
behavior is deprecated.

136

Advanced Topics

Subversion defines the list of keywords available for substitution. That list contains the following five
keywords, some of which have aliases that you can also use:

Dat e
This keyword describes the last time the file was known to have been changed in the repository, and looks
something like $Dat e: 2002- 07-22 21:42:37 -0700 (Mon, 22 Jul 2002) $.Itmay alsobe
specified asLast ChangedDat e.

Revi si on
This keyword describes the last known revision in which this file changed in the repository, and looks
something like $Revi si on: 144 $. 1t may also be specified asLast ChangedRevi si on or Rev.

Aut hor
This keyword describes the last known user to change this file in the repository, and looks something like
$Aut hor: harry $. It may also be specified asLast ChangedBy.

HeadURL
This keyword describes the full URL to the latest version of the file in the repository, and looks something like
$HeadURL: http://svn.collab. net/repos/trunk/ READVE $. It may be abbreviated as URL.

I d
This keyword is a compressed combination of the other keywords. Its substitution looks something like $I d:
cal c.c 148 2002-07-28 21:30:43Z sally $, andisinterpreted to mean that thefilecal c. ¢ was
last changed in revision 148 on the evening of July 28, 2002 by the user sal | y.

Simply adding keyword anchor text to your file does nothing special. Subversion will never attempt to
perform textual substitutions on your file contents unless explicitly asked to do so. After all, you might
be writing a document 8 about how to use keywords, and you don't want Subversion to substitute your
beautiful examples of un-substituted keyword anchors!

To tell Subversion whether or not to substitute keywords on a particular file, we again turn to the prop-
erty-related subcommands. The svn: keywor ds property, when set on aversioned file, controls which
keywords will be substituted on that file. The value is a space-delimited list of the keyword names or ali-
ases found in the previous table.

For example, say you have aversioned file named weat her . t xt that looks like this:

Here is the latest report fromthe front |ines.

$Last ChangedDat e$

Rev

Cumul us cl ouds are appearing nore frequently as sumer approaches.

With no svn: keywor ds property set on that file, Subversion will do nothing special. Now, let's en-
able substitution of the Last ChangedDat e keyword.

$ svn propset svn:keywords "Date Author" weather.txt
property 'svn: keywords' set on 'weather.txt’
$

Now you have made alocal property modification on the weat her . t xt file. You will see no changes
to the file's contents (unless you made some of your own prior to setting the property). Notice that the
file contained a keyword anchor for the Rev keyword, yet we did not include that keyword in the prop-

8. or maybe even a section of abook ...

137

Advanced Topics

erty value we set. Subversion will happily ignore requests to substitute keywords that are not present in
the file, and will not substitute keywords that are not present in the svn: keywor ds property value.

Keywords and Spurious Differences

The user-visible result of keyword substitution might lead you to think that every version of a file with that
feature in use differs from the previous version in at least the area where the keyword anchor was placed.
However, this is actually not the case. While checking for local modifications during svn diff, and before
transmitting those local modifications during svn commit, Subversion “un-substitutes’ any keywords that it
previously substituted. The result is that the versions of the file that are stored in the repository contain only
the real modifications that users make to thefile.

Immediately after you commit this property change, Subversion will update your working file with the
new substitute text. Instead of seeing your keyword anchor $Last ChangedDat e$, you'll seeits sub-
stituted result. That result also contains the name of the keyword, and continues to be bounded by the
dollar sign ($) characters. And as we predicted, the Rev keyword was not substituted because we didn't
ask for it to be.

Note aso that we set the svn: keywor ds property to “Date Author” yet the keyword anchor used the
dias$Last ChangedDat e$ and still expanded correctly.

Here is the latest report fromthe front |ines.

$Last ChangedDat e: 2002-07-22 21:42:37 -0700 (Mon, 22 Jul 2002) $
Rev

Cunul us cl ouds are appearing nore frequently as summer approaches.

If someone else now commits a change to weat her . t xt , your copy of that file will continue to dis-
play the same substituted keyword value as before—until you update your working copy. At that time
the keywords in your weat her . t xt file will be re-substituted with information that reflects the most
recent known commit to that file.

Subversion 1.2 introduced a new variant of the keyword syntax which brought additional, use-
ful—though perhaps atypical—functionality. Y ou can now tell Subversion to maintain afixed length (in
terms of the number of bytes consumed) for the substituted keyword. By using a double-colon (: :) after
the keyword name, followed by a number of space characters, you define that fixed width. When Sub-
version goes to substitute your keyword for the keyword and its value, it will essentially replace only
those space characters, leaving the overall width of the keyword field unchanged. If the substituted value
is shorter than the defined field width, there will be extra padding characters (spaces) at the end of the
substituted field; if it istoo long, it is truncated with a special hash (#) character just before the fina dol-
lar sign terminator.

For example, say you have a document in which you have some section of tabular data reflecting the
document's Subversion keywords. Using the original Subversion keyword substitution syntax, your file
might ook something like:

Rev: Revi sion of |ast conmmt
$Aut hor$: Author of |ast commit
$Dat e$: Date of |ast commit

Now, that looks nice and tabular at the start of things. But when you then commit that file (with
keyword substitution enabled, of course), you see:

$Rev: 12 $: Revi sion of |ast conmmt

138

Advanced Topics

$Aut hor: harry $: Author of last conmmt
$Dat e: 2006-03-15 02: 33: 03 -0500 (Wed, 15 Mar 2006) $: Date of last conmit

The result is not so beautiful. And you might be tempted to then adjust the file after the substitution so
that it again looks tabular. But that only holds as long as the keyword values are the same width. If the
last committed revision rolls into a new place value (say, from 99 to 100), or if another person with a
longer username commits the file, stuff gets all crooked again. However, if you are using Subversion 1.2
or better, you can use the new fixed-length keyword syntax, define some field widths that seem sane,
and now your file might look like this:

$Rev: : $: Revision of |last commt
$Aut hor : : $: Author of last commt
$Dat e: : $: Date of last comit

Y ou commit this change to your file. This time, Subversion notices the new fixed-length keyword syn-
tax, and maintains the width of the fields as defined by the padding you placed between the double-
colon and the trailing dollar sign. After substitution, the width of the fields is completely un-
changed—the short values for Rev and Aut hor are padded with spaces, and the long Dat e field is

truncated by a hash character:
$Rev:: 13 $: Revision of last commit
$Aut hor:: harry $: Author of last commt

$Dat e: : 2006-03-15 O#$%: Date of |ast commt

The use of fixed-length keywords is especialy handy when performing substitutions into complex file
formats that themselves use fixed-length fields for data, or for which the stored size of a given data field
is overbearingly difficult to modify from outside the format's native application (such as for Microsoft
Office documents).

° Warning

Be aware that because the width of a keyword field is measured in bytes, the potential for
corruption of multi-byte values exists. For example, a username which contains some
multi-byte UTF-8 characters might suffer truncation in the middle of the string of bytes
which make up one of those characters. The result will be a mere truncation when viewed
at the byte level, but will likely appear as a string with an incorrect or garbled final charac-
ter when viewed as UTF-8 text. It is conceivable that certain applications, when asked to
load the file, would notice the broken UTF-8 text and deem the entire file corrupt, refusing
to operate on the file altogether.

svn: eol -styl e

Unless otherwise noted using a versioned file's svn: nmi ne-t ype property, Subversion assumes the
file contains human-readable data. Generally speaking, Subversion only uses this knowledge to determ-
ineif contextual difference reports for that file are possible. Otherwise, to Subversion, bytes are bytes.

This means that by default, Subversion doesn't pay any attention to the type of end-of-line (EOL) mark-
ers used in your files. Unfortunately, different operating systems use different tokens to represent the
end of aline of text in afile. For example, the usua line ending token used by software on the Windows
platform is a pair of ASCII control characters—carriage return (CR) and line feed (LF). Unix software,
however, just usesthe LF character to denote the end of aline.

Not all of the various tools on these operating systems are prepared to understand files that contain line

139

Advanced Topics

endings in a format that differs from the native line ending style of the operating system on which they
are running. Common results are that Unix programs treat the CR character present in Windows files as
aregular character (usually rendered as M), and that Windows programs combine all of the lines of a
Unix file into one giant line because no carriage return-linefeed (or CRLF) character combination was
found to denote the end of line.

This sensitivity to foreign EOL markers can become frustrating for folks who share a file across differ-
ent operating systems. For example, consider a source code file, and devel opers that edit this file on both
Windows and Unix systems. If al the developers always use tools which preserve the line ending style
of thefile, no problems occur.

But in practice, many common tools either fail to properly read afile with foreign EOL markers, or they
convert the file's line endings to the native style when the file is saved. If the former is true for a de-
veloper, he has to use an external conversion utility (such as dos2unix or its companion, unix2dos) to
prepare the file for editing. The latter case requires no extra preparation. But both cases result in afile
that differs from the original quite literally on every line! Prior to committing his changes, the user has
two choices. Either he can use a conversion utility to restore the modified file to the same line ending
style that it was in before his edits were made. Or, he can simply commit the file—new EOL markers
and al.

The result of scenarios like these include wasted time and unnecessary modifications to committed files.
Wasted time is painful enough. But when commits change every line in afile, this complicates the job of
determining which of those lines were changed in a non-trivial way. Where was that bug really fixed?
On what line was a syntax error introduced?

The solution to this problem is the svn: eol - st yl e property. When this property is set to a valid
value, Subversion uses it to determine what special processing to perform on the file so that the file's
line ending style isn't flip-flopping with every commit that comes from a different operating system. The
valid values are:

native
This causes the file to contain the EOL markers that are native to the operating system on which Subversion
was run. In other words, if a user on a Windows machine checks out a working copy that contains a file with an
svn: eol - st yl e property set to nat i ve, that file will contain CRLF EOL markers. A Unix user checking
out aworking copy which contains the same file will see LF EOL markersin his copy of thefile.

Note that Subversion will actually store the file in the repository using normalized LF EOL markers regardless
of the operating system. Thisis basically transparent to the user, though.

CRLF
This causes the file to contain CRLF sequences for EOL markers, regardless of the operating system in use.

LF
This causes the file to contain LF characters for EOL markers, regardless of the operating system in use.

CR
This causes the file to contain CR characters for EOL markers, regardless of the operating system in use. This
line ending style is not very common. It was used on older Macintosh platforms (on which Subversion doesn't
even run).

svn: external s
The svn: ext er nal s property contains instructions for Subversion to populate a versioned directory

with one or more other checked-out Subversion working copies. For more information on this keyword
and its use, see the section called “Externals Definitions’.

140

Advanced Topics

svn: speci al

The svn: speci al property isthe only svn: property that isn't meant to be directly set or modified
by users. Subversion automatically sets this property whenever a“special” object is scheduled for addi-
tion, such as a symbolic link. The repository stores an svn: speci al object as an ordinary file.
However, when a client sees this property during checkouts or updates, it interprets the contents of the
file and tranglates the item back into the specia type of object. In versions of Subversion current at the
time of writing, only versioned symbolic links have this property attached, but in future versions of Sub-
version other special types of nodes will probably use this property as well.

Note: Windows clients don't have symbolic links, and thus ignore any svn: speci al files coming
from a repository that claim to be symbolic links. On Windows, the user ends up with an ordinary ver-
sioned file in the working copy.

svn: needs-| ock

This property is used to signify that the file it's attached to ought to be locked before editing. The value
of the property is irrelevant; Subversion will normalize its value to *. When present, the file will be
read-only unless the user has explicitly locked the file. When alock-token is present (as a result of run-
ning svn lock), the file becomes read-write. When the lock is released, the file becomes read-only again.

To learn more about how, when, and why this property should be used, see the section called “Lock
Communication”.

Automatic Property Setting

Properties are a powerful feature of Subversion, acting as key components of many Subversion features
discussed elsewhere in this and other chapters—textual diff and merge support, keyword substitution,
newline trandation, etc. But to get the full benefit of properties, they must be set on the right files and
directories. Unfortunately, that can be a step easily forgotten in the routine of things, especialy since
failing to set a property doesn't usually result in an obvious error condition (at least compared to, say,
failing to add afile to version control). To help your properties get applied to the places that need them,
Subversion provides a couple of simple but useful features.

Whenever you introduce a file to version control using the svn add or svn import commands, Subver-
sion runs a very basic heuristic to determine if that file consists of human-readable or non-hu-
man-readable content. If the latter is the decision made, Subversion will automatically set the
svn: i ne-t ype property on that file to appl i cati on/ oct et - st r eam (the generic “this is a
collection of bytes” MIME type). Of course, if Subversion guesses incorrectly, or if you wish to set the
svn: m ne-type property to something more precise—perhaps i mage/ png or appl i cati on/

x- shockwave- f | ash—you can always remove or edit that property.

Subversion aso provides the auto-props feature, which allows you to create mappings of filename pat-
terns to property hames and values. These mappings are made in your runtime configuration area. They
again affect adds and imports, and not only can override any default MIME type decision made by Sub-
version during those operations, they can also set additional Subversion or custom properties, too. For
example, you might create a mapping that says that any time you add JPEG files—ones that match the
pattern * . j pg—Subversion should automatically set the svn: mi me- t ype property on those files to
i mage/ j peg. Or perhaps any filesthat match *. cpp should havesvn: eol - styl e settonati ve,
and svn: keywor ds set to | d. Auto-prop support is perhaps the handiest property related tool in the
Subversion toolbox. See the section called “Config” for more about configuring that support.

Locking

Subversion's “copy-modify-merge” model is optimal when users are collaborating on projects that con-
sist of line-based text files, such as program source code. However, as discussed in When Locking is

141

Advanced Topics

Necessary, sometimes one has to use the “lock-modify-unlock” model instead of Subversion's standard
concurrent model. When afile consists of binary data, it's often difficult or impossible to merge two sets
of changes made in parallel by different users. For this reason, Subversion 1.2 and later offers a feature
known as locking, often known as “reserved checkouts’ in other version control systems.

Subversion's locking feature has two main goals:

e Serializing accessto a resource. Allow a user to grab an exclusive right to change to afilein the re-
pository. If Harry reserves the right to change f 00. j pg, then Sally should not be able to commit a
changetoit.

* Aiding communication. Prevent users from wasting time on unmergeable changes. If Harry has re-
served the right to change f 00. j pg, then it should be easy for Sally to notice this fact and avoid
working on thefile.

Subversion's locking feature is currently limited to files only—it's not yet possible to reserve access to a
whole directory tree.

Three meanings of “lock”

In this section, and almost everywhere in this book, the words “lock” and “locking” describe a mechanism for
mutual exclusion between users to avoid clashing commits. Unfortunately, there are two other sorts of “lock”
with which Subversion, and therefore this book, sometimes needs to be concerned.

» Working copy locks, used internally by Subversion to prevent clashes between multiple Subversion clients
operating on the same working copy. Thisis the sort of lock indicated by an L in the third column of svn
status output, and removed by the svn cleanup command, as described in the section called “svn
cleanup”.

» Database locks, used internally by the Berkeley DB backend to prevent clashes between multiple pro-
grams trying to access the database. Thisis the sort of lock whose unwanted persistence after an error can
cause arepository to be “wedged”, as described in the section called “ Repository Recovery”.

You can generally forget about these other sorts of lock, until something goes wrong that requires you to care
about them. In this book, “lock”™ means the first sort unless the contrary is either clear from context or expli-
citly stated.

Creating locks

In the Subversion repository, a lock is a piece of metadata which grants exclusive access to one user to
change afile. This user is said to be the lock owner. Each lock also has a unique identifier, typicaly a
long string of characters, known as the lock token. The repository manages locks in a separate table, and
enforces locks during a commit operation. If any commit transaction attempts to modify or delete the
file (or delete a parent of thefile), the repository will demand two pieces of information:

1. User authentication. The client performing the commit must be authenticated as the lock owner.
2. Softwareauthorization. The user's working copy must send the lock token with the commit, prov-

ing that it knows exactly which lock it's using.

An example is in order, to demonstrate. Let's say that Harry has decided to change a JPEG image. To

142

Advanced Topics

prevent other people from committing changes to the file, he locks the file in the repository using the
svn lock command:

$ svn lock banana.jpg --nmessage "Editing file for tomorrow s rel ease.”
'banana.j pg' | ocked by user 'harry'.

$ svn status
K banana. j pg

$ svn info banana.jpg

Pat h: banana. j pg

Nane: banana. | pg

URL: http://svn.exanpl e.conlrepos/project/banana.jpg

Repository UU D edb2f 264- 5ef 2- 0310- a47a- 87b0cel7a8ec

Revi si on: 2198

Node Kind: file

Schedul e: nor nal

Last Changed Author: frank

Last Changed Rev: 1950

Last Changed Date: 2005-03-15 12:43:04 -0600 (Tue, 15 Mar 2005)
Text Last Updated: 2005-06-08 19:23:07 -0500 (Wed, 08 Jun 2005)
Properties Last Updated: 2005-06-08 19:23:07 -0500 (Wed, 08 Jun 2005)
Checksum 3b110d3b10638f 5d1f 4f eOf 436a5a2a5

Lock Token: opaquel ockt oken: OcOf 600b- 88f 9- 0310- 9e48- 355b44d4a58e
Lock Omner: harry

Lock Created: 2005-06-14 17:20:31 -0500 (Tue, 14 Jun 2005)

Lock Comment (1 line):

Editing file for tonorrow s rel ease.

There are a number of new things demonstrated in the previous example. First, notice that Harry passed
the - - message option to svn lock. Similar to svn commit, the svn lock command can take comments
(either via- - message (-m) or--file (-F)) todescribe the reason for locking the file. Unlike
svn commit, however, svn lock will not demand a message by launching your preferred text editor.
Lock comments are optional, but still recommended to aid communication.

Second, the lock attempt succeeded. This means that the file wasn't already locked, and that Harry had
the latest version of the file. If Harry's working copy of the file had been out-of-date, the repository
would have rejected the request, forcing harry to svn update and reattempt the locking command.

Also naotice that after creating the lock in the repository, the working copy has cached information about
the lock—maost importantly, the lock token. The presence of the lock token is critical. It gives the work-
ing copy authorization to make use of the lock later on. The svn status command shows a K next to the
file (short for locK ed), indicating that the lock token is present.

Regarding lock tokens

A lock token isn't an authentication token, so much as an authorization token. The token isn't a protected
secret. In fact, alock's unique token is discoverable by anyone who runs svn info URL .

A lock token is special only when it lives inside a working copy. It's proof that the lock was created in that
particular working copy, and not somewhere else by some other client. Merely authenticating as the lock
owner isn't enough to prevent accidents.

For example: suppose you lock a file using a computer at your office, perhaps as part of a changeset in pro-
gress. It should not be possible for a working copy (or aternate Subversion client) on your home computer to
accidentally commit a change to that same file, just because you've authenticated as the lock's owner. In other
words, the lock token prevents one piece of Subversion-related software from undermining the work of anoth-

143

Advanced Topics

er. (In our example, if you really need to change the file from an alternate working copy, you would need to
break the lock and re-lock thefile.)

Now that Harry haslocked banana. j pg, Sally isunable to change or delete that file:

$ whoam
sally

$ svn del et e banana.j pg
D banana. j pg

$ svn commit -m "Del ete useless file."

Del eti ng banana. j pg

svn: Conmit failed (details follow):

svn: DELETE of

"/ repos/ project/!svn/wk/64bad3a9- 96f 9- 0310- 818a- df 4224ddc35d/ banana. j pg' :
423 Locked (http://svn.exanmple.com

But Harry, after touching up the bananas shade of yellow, is able to commit his changes to the file.
That's because he authenticates as the lock owner, and also because his working copy holds the correct
lock token:

$ whoani
harry

$ svn status
M K banana. j pg

$ svn commit -m " Make banana nore yel | ow'
Sendi ng banana. j pg

Transmitting file data .

Committed revision 2201.

$ svn status
$

Notice that after the commit is finished, svn status shows that the lock token is no longer present in
working copy. Thisisthe standard behavior of svn commit: it walks the working copy (or list of targets,
if you provide such a list), and sends al lock tokens it encounters to the server as part of the commit
transaction. After the commit completes successfully, all of the repository locks that were mentioned are
released—even on files that weren't committed. The rationale here is to discourage users from being
sloppy about locking, or from holding locks for too long. For example, suppose Harry were to haphaz-
ardly lock thirty files in a directory named i nages, because he's unsure of which files he needs to
change. He ends up making changes to only four files. When he runs svn commit images, the process
would still release al thirty locks.

This behavior of automatically releasing locks can be overridden with the - - no- unl ock option to svn
commit. Thisis best used for those times when you want to commit changes, but till plan to make more
changes and thus need to retain existing locks. This behavior is aso semi-permanently tweakable, by
setting no- unl ock = yes inyour run-time conf i g file (see the section called “ Runtime Configura-
tion Area’).

Of course, locking a file doesn't oblige one to commit a change to it. The lock can be released at any
time with a simple svn unlock command:

144

Advanced Topics

$ svn unl ock banana.c
' banana. c' unl ocked.

Discovering locks

When a commit fails due to someone else's locks, it's fairly easy to learn about them. The easiest of
these is svn status --show-updates:

$ whoam
sally
$ svn status --show updates
M 23 bar. c
M 0] 32 raisin.jpg
* 72 foo.h
St at us agai nst revi sion: 105

In this example, Sally can see not only that her copy of f 00. h is out-of-date, but that one of the two
modified files she plans to commit is locked in the repository. The O symbol stands for “Other”, mean-
ing that alock exists on the file, and was created by somebody else. If she were to attempt a commit, the
lock on rai sin.jpg would prevent it. Sally is left wondering who made the lock, when, and why.
Once again, svn info has the answers:

$ svn info http://svn.exanpl e.com repos/project/raisin.jpg
Pat h: raisin.jpg

Name: raisin.jpg

URL: http://svn.exanpl e.conirepos/project/raisin.jpg
Repository UUI D edb2f 264- 5ef 2- 0310- a47a- 87b0cel7a8ec

Revi si on: 105

Node Kind: file

Last Changed Author: sally

Last Changed Rev: 32

Last Changed Date: 2005-01-25 12:43:04 -0600 (Tue, 25 Jan 2005)
Lock Token: opaquel ockt oken: fc2b4dee- 98f 9- 0310- abf 3- 653f f 3226e6b
Lock Omer: harry

Lock Created: 2005-02-16 13:29:18 -0500 (Wed, 16 Feb 2005)

Lock Coment (1 line):

Need to make a quick tweak to this inage.

Just as svn info can be used to examine objects in the working copy, it can also be used to examine ob-
jects in the repository. If the main argument to svn info is a working copy path, then all of the working
copy's cached information is displayed; any mention of alock means that the working copy is holding a
lock token (if afile is locked by another user or in another working copy, svn info on a working copy
path will show no lock information at all). If the main argument to svn info isa URL, then the informa-
tion reflects the latest version of an object in the repository; any mention of alock describes the current
lock on the object.

So in this particular example, Sally can see that Harry locked the file on February 16th to “make a quick
tweak”. It being June, she suspects that he probably forgot all about the lock. She might phone Harry to
complain and ask him to release the lock. If he's unavailable, she might try to forcibly break the lock
herself or ask an administrator to do so.

Breaking and stealing locks

145

Advanced Topics

A repository lock isn't sacred; it can be released not only by the person who created it, but by anyone at
all. When somebody other than the original lock creator destroys alock, we refer to this as breaking the
lock.

From the administrator's chair, it's ssmple to break locks. The svnlook and svhadmin programs have the
ability to display and remove locks directly from the repository. (For more information about these
tools, see the section called “ An Administrator's Toolkit”.)

$ svnadm n | sl ocks /usr/local/svn/repos

Pat h: /project2/imges/ banana.j pg

UUI D Token: opaquel ockt oken: c32b4d88- e8f b- 2310- abb3- 153ff 1236923
Omner: frank

Created: 2005-06-15 13:29:18 -0500 (Wed, 15 Jun 2005)

Expires:
Comment (1 line):
Still inproving the yellow col or.

Pat h: /project/raisin.jpg
UUI D Token: opaquel ockt oken: f c2b4dee- 98f 9- 0310- abf 3- 653f f 3226e6b

Omer: harry
Created: 2005-02-16 13:29:18 -0500 (Wed, 16 Feb 2005)
Expi res:

Comment (1 line):
Need to make a quick tweak to this inage.

$ svnadm n rnl ocks /usr/local/svn/repos /project/raisin.jpg
Renoved | ock on '/project/raisin.jpg .

The more interesting option is allowing users to break each other's locks over the network. To do this,
one simply needsto passthe - - f or ce to the unlock command:

$ whoam
sally
$ svn status --show updates
M 23 bar.c
M 0] 32 rai sin.jpg
* 72 f0o. h
St at us agai nst revi sion: 105

$ svn unl ock raisin.jpg
svn: 'raisin.jpg’ is not locked in this working copy

$ svn info raisin.jpg | grep URL
URL: http://svn.exanpl e.conirepos/project/raisin.jpg

$ svn unl ock http://svn. exanpl e. com repos/ project/raisin.jpg
svn: Unl ock request failed: 403 Forbidden (http://svn.exanple.con)

$ svn unlock --force http://svn. exanpl e. conf repos/ project/raisin.jpg
"raisin.jpg" unlocked.

Sally's initial attempt to unlock failed because she ran svn unlock directly on her working copy of the
file, and no lock token was present. To remove the lock directly from the repository, she needs to pass a
URL to svn unlock. Her first attempt to unlock the URL fails, because she can't authenticate as the lock
owner (nor does she have the lock token). But when she passes - - f or ce, the authentication and au-
thorization requirements are ignored, and the remote lock is broken.

146

Advanced Topics

Of course, simply breaking a lock may not be enough. In the running example, Sally may not only want
to break Harry's long-forgotten lock, but re-lock the file for her own use. She can accomplish this by
running svn unlock --force and then svn lock back-to-back, but there's a small chance that somebody
else might lock the file between the two commands. The simpler thing to is steal the lock, which in-
volves breaking and re-locking the file all in one atomic step. To do this, pass the - - f or ce option to
svn lock:

$ svn lock raisin.jpg
svn: Lock request failed: 423 Locked (http://svn.exanple.com

$ svn lock --force raisin.jpg

"raisin.jpg" |ocked by user "sally'.

In any case, whether the lock is broken or stolen, Harry may be in for a surprise. Harry's working copy
still contains the original lock token, but that lock no longer exists. The lock token is said to be defunct.
The lock represented by the lock-token has either been broken (no longer in the repository), or stolen
(replaced with a different lock). Either way, Harry can see this by asking svn status to contact the repos-

itory:
$ whoanmi
harry

$ svn status
K raisin.jpg

$ svn status --show updates
B 32 rai sin.jpg

$ svn update
B ralsin.jpg

$ svn status

$

If the repository lock was broken, then svn status --show-updates displays a B (Broken) symbol next to
thefile. If anew lock existsin place of the old one, then aT (sTolen) symbol is shown. Finally, svn up-

date notices any defunct lock tokens and removes them from the working copy.

L ocking Policies

Different systems have different notions of how strict alock should be. Some folks argue that locks must be
strictly enforced at all costs, releasable only by the original creator or administrator. They argue that if anyone
can break a lock, then chaos breaks loose and the whole point of locking is defeated. The other side argues
that locks are first and foremost a communication tool. If users are constantly breaking each others locks,
then it represents a cultural failure within the team and the problem falls outside the scope of software en-
forcement.

Subversion defaults to the “softer” approach, but still allows administrators to create stricter enforcement
policies through the use of hook scripts. In particular, the pr e- | ock and pr e- unl ock hooks allow admin-
istrators to decide when lock creation and lock releases are allowed to happen. Depending on whether or not a
lock already exists, these two hooks can decide whether or not to allow a certain user to break or steal alock.
The post -1 ock and post - unl ock hooks are also available, and can be used to send email after locking
actions.

147

Advanced Topics

To learn more about repository hooks, see the section called “Hook Scripts’.

Lock Communication

We've seen how svn lock and svn unlock can be used to create, release, break, and steal locks. This sat-
isfies the goal of serializing commit access to a file. But what about the larger problem of preventing
wasted time?

For example, suppose Harry locks an image file and then begins editing it. Meanwhile, miles away,
Sally wants to do the same thing. She doesn't think to run svn status --show-updates, so she has no idea
that Harry has aready locked the file. She spends hours editing the file, and when she tries to commit
her change, she discovers that either the file is locked or that she's out-of-date. Regardless, her changes
aren't mergeable with Harry's. One of these two people has to throw away their work, and a lot of time
has been wasted.

Subversion's solution to this problem is provide a mechanism to remind users that a file ought to be
locked before the editing begins.

The mechanism is a special property, svn: needs- | ock. If the property is attached to afile (the value
isirrelevant), then the file will have read-only permissions. When the user locks the file and receives a
lock token, the file becomes read-write. When the lock is released—either explicitly unlocked, or re-
leased via commit—the file returns to read-only again.

The theory, then, isthat if the image file has this property attached, then Sally would immediately notice
something is strange when she opens the file for editing. Her application would be unable to save
changes, or (better yet) tell her that the file is read-only. This reminds her to lock the file before editing,
whereby she discovers the pre-existing lock:

$ /usr/local/bin/ginmp raisin.jpg
ginp: error: file is read-only!

$1s -1 raisin.jpg
-r--r--r-- 1 sally sally 215589 Jun 8 19:23 raisin.jpg

$ svn lock raisin.jpg
svn: Lock request failed: 423 Locked (http://svn.exanple.com

$ svn info http://svn.exanpl e.com repos/project/raisin.jpg | grep Lock
Lock Token: opaquel ocktoken: f c2b4dee- 98f 9- 0310- abf 3- 653f f 3226e6b

Lock Omner: harry

Lock Created: 2005-06-08 07:29:18 -0500 (Thu, 08 June 2005)

Lock Coment (1 line):

Maki ng some tweaks. Locking for the next two hours.

As a matter of “best practice’, both users and administrators are encouraged to attach the
svn: needs- | ock property to any file which cannot be contextually merged. It's the main technique
for encouraging good locking habits and preventing wasted effort.

Note that this property is a communication tool which works independently from the locking system. In
other words, any file can be locked, whether or not this property is present. And conversely, the pres-
ence of this property doesn't make the repository require alock when committing.

The system isn't flawless, either. It's possible that even when a file has the property, the read-only re-
minder won't always work. Sometimes applications misbehave and “hijack” the read-only file, silently

148

Advanced Topics

allowing users to edit and save the file anyway. Unfortunately, there's not much Subversion can do
about this.

Peg and Operative Revisions

We make use of the ability to copy, move, rename, and completely replace files and directories on our
computers all that time. And your version control system shouldn't get in the way of your doing these
things with your version controlled files and directories, either. Subversion's file management support is
quite liberating, affording almost as much flexibility for versioned files that you'd expect when manipu-
lating your unversioned ones. But that flexibility means that across the lifetime of your repository, a giv-
en versioned resource might have many paths, and a given path might represent severa entirely different
versioned resources. And this introduces a certain level of complexity to your interactions with those
paths and resources.

Subversion is pretty smart about noticing when an object's version history includes such “changes of ad-
dress’. For example, if you ask for al the logs of a particular file that was renamed last week, Subver-
sion happily provides all those logs—the revision in which the rename itself happened, plus the logs of
relevant revisions both before and after that rename. So, most of the time, you don't even have to think
about such things. But occasionally, Subversion needs your help to clear up ambiguities.

The simplest example of this occurs when a directory or file is deleted from version control, and then a
new directory or file is created with the same name and added to version control. Clearly the thing you
deleted and the thing you later added aren't the same thing, they merely happen to have had the same
path, which well call / t r unk/ obj ect . What, then, does it mean to ask Subversion about the history
of / t runk/ obj ect ? Are you asking about the thing currently at that location, or the old thing you de-
leted from that location? Are you asking about the operations that have happened to all the objects that
have lived at that path? Clearly, Subversion needs a hint about what you are really asking.

And thanks to moves, versioned resource history can get far more twisted than that, even. For example,
you might have a directory named concept , containing some nascent software project you've been
toying with. Eventualy, though, that project matures to the point that the idea seems to actually have
some wings, so you do the unthinkable and decide to give the project a name. Let's say you called your
software Frabnaggilywort. At this paoint, it makes sense to rename the directory to reflect the project's
new name, so concept isrenamed to f r abnaggi | ywort . Life goes on, Frabnaggilywort releases a
1.0 version, and is downloaded and used daily by hordes of people aiming to improve their lives.

It's a nice story, really, but it doesn't end there. Entrepreneur that you are, you've already got another
think in the tank. So you make a new directory, concept , and the cycle begins again. In fact, the cycle
begins again many times over the years, each time starting with that old concept directory, then some-
times seeing that directory renamed as the idea cures, sometimes seeing it deleted when you scrap the
idea. Or, to get really sick, maybe you rename concept to something else for awhile, but later rename
the thing back to concept for some reason.

When scenarios like these occur, attempting to instruct Subversion to work with these re-used paths can
be alittle like instructing a motorist in Chicago's West Suburbs to drive east down Roosevelt Road and
turn left onto Main Street. In a mere twenty minutes, you can cross “Main Street” in Wheaton, Glen
Ellyn, and Lombard. And no, they aren't the same street. Our motorist—and our Subversion—need a
little more detail in order to do the right thing.

In version 1.1, Subversion introduced a way for you to tell it exactly which Main Street you meant. It's
called the peg revision, and it is a revision provided to Subversion for the sole purpose of identifying a
unique line of history. Because at most one versioned resource may occupy a path at any given
time—or, more precisaly, in any one revision—the combination of a path and a peg revisionisall that is
needed to refer to a specific line of history. Peg revisions are specified to the Subversion command-line
client using at syntax, so called because the syntax involves appending an “at sign” (@ and the peg revi-

%y ou're not supposed to name it. Once you name it, you start getting attached to it.” — Mike Wazowski

149

Advanced Topics

sion to the end of the path with which the revision is associated.

But what of the - - r evi si on (-r) of which we've spoken so much in this book? That revision (or
set of revisions) is called the operative revision (or operative revision range). Once a particular line of
history has been identified using a path and peg revision, Subversion performs the requested operation
using the operative revision(s). To map this to our Chicagoland streets analogy, if we are told to go to
606 N. Main Street in Wheaton, 1° we can think of “Main Street” as our path and “Wheaton” as our peg
revision. These two pieces of information identify a unique path which can travelled (north or south on
Main Street), and will keep us from travelling up and down the wrong Main Street in search of our des-
tination. Now we throw in “606 N.” as our operative revision, of sorts, and we know exactly where to

go.

The" peg-revision" algorithm

When the commandline client sees acommand of the form:

$ svn conmmand -r OPERATI VE- REV it em@PEG REV

...it performs the following algorithm:

* Gotorevison PEG REV, andfindi t em This locates a unigque object in the repository.

» Trace the object's history backwards (through any possible renames) to its ancestor in revision OPERAT-
| VE- REV.

» Perform the requested action on that ancestor, wherever it is located, or whatever its name might be.

Remember that even when you don't explicitly supply a peg-revision, it's still present. It defaults to BASE for
working copy items, and to HEAD for URLSs.

Say that long ago we created our repository, and in revision 1 added our first concept directory, plus
an | DEA file in that directory talking about the concept. After several revisions in which rea code was
added and tweaked, we, in revision 20, renamed this directory to f r abnaggi | ywor t . By revision 27,
we had a new concept, a new concept directory to hold it, and a new | DEA file to describe it. And
then five years and twenty thousand revisions flew by, just like they would in any good romance story.

Now, years later, we wonder what the | DEA file looked like back in revision 1. But Subversion needs to
know if we are asking about how the current file looked back in revision 1, or are we asking for the con-
tents of whatever file lived at concept s/ | DEA in revision 1? Certainly those questions have different
answers, and because of peg revisions, you can ask either of them. To find out how the current | DEA
file looked in that old revision, you run:

$ svn cat -r 1 concept/I|DEA
subversion/libsvn_client/ra.c:775: (apr_err=20014)
svn: Unable to find repository location for 'concept/IDEA in revision

Of course, in this example, the current | DEA file didn't exist yet in revision 1, so Subversion gives an er-
ror. The command above is shorthand for alonger notation which explicitly lists a peg revision. The ex-
panded notation is:

19606 N. Main Street, Wheaton, lllinais, is the home of the Wheaton History Center. Get it—* History Center”? It seemed appropriate....

150

Advanced Topics

$ svn cat -r 1 concept/| DEA@GASE

subversion/libsvn_client/ra.c:775: (apr_err=20014)

svn: Unable to find repository location for 'concept/IDEA in revision 1
And when executed, it has the expected results. Peg revisions generally default to a value of BASE (the

revision currently present in the working copy) when applied to working copy paths, and of HEAD when
applied to URLSs.

Let's ask the other question, then—in revision 1, what were the contents of whatever file occupied the
addressconcept s/ | DEA at the time? We'll use an explicit peg revision to help us out.

$ svn cat concept/| DEA@G

The idea behind this project is to come up with a piece of software
that can frab a naggily wort. Frabbing naggily worts is tricky

busi ness, and doing it incorrectly can have serious ramfications, so
we need to enploy over-the-top input validation and data verification
nmechani sns.

This appears to be the right output. The text even mentions frabbing naggily worts, so thisis amost cer-
tainly the file which describes the software now called Frabnaggilywort. In fact, we can verify this using
the combination of an explicit peg revision and explicit operative revision. We know that in HEAD, the
Frabnaggilywort project islocated in thef r abnaggi | ywor t directory. So we specify that we want to
see how the line of history identified in HEAD as the path f r abnaggi | ywor t / | DEA looked in revi-
sion 1.

$ svn cat -r 1 frabnaggil ywort/| DEAGHEAD

The idea behind this project is to come up with a piece of software
that can frab a naggily wort. Frabbing naggily worts is tricky

busi ness, and doing it incorrectly can have serious ramfications, so
we need to enploy over-the-top input validation and data verification
nmechani sns.

And the peg and operative revisions need not be so trivial, either. For example, say f r abnaggi | y-

wor t had been deleted from HEAD, but we know it existed in revision 20, and we want to see the diffs
for its | DEA file between revisions 4 and 10. We can use the peg revision 20 in conjunction with the
URL that would have held Frabnaggilywort's | DEA file in revision 20, and then use 4 and 10 as our op-
erative revision range.

$ svn diff -r 4:10 http://svn.red-bean. com projects/frabnaggil ywort/| DEA@O
I ndex: frabnaggil ywort/| DEA

--- frabnaggi |l ywort/ I DEA (revision 4)

+++ frabnaggil ywort/ 1 DEA (revision 10)

@-1,5 +1,5 @@

-The idea behind this project is to cone up with a piece of software
-that can frab a naggily wort. Frabbing naggily worts is tricky

-busi ness, and doing it incorrectly can have serious ramfications, so
-we need to enploy over-the-top input validation and data verification
- mechani sis.

+The i dea behind this project is to cone up with a piece of
+client-server software that can renotely frab a naggily wort.
+Frabbi ng naggily worts is tricky business, and doing it incorrectly
+can have serious ranifications, so we need to enploy over-the-top

+i nput validation and data verification mechanisns.

— —+

151

Advanced Topics

Fortunately, most folks aren't faced with such complex situations. But when you are, remember that peg
revisions are that extra hint Subversion needs to clear up ambiguity.

Externals Definitions

Sometimes it is useful to construct a working copy that is made out of a number of different checkouts.
For example, you may want different subdirectories to come from different locations in a repository, or
perhaps from different repositories altogether. Y ou could certainly setup such a scenario by hand—using
svn checkout to create the sort of nested working copy structure you are trying to achieve. But if this
layout is important for everyone who uses your repository, every other user will need to perform the
same checkout operations that you did.

Fortunately, Subversion provides support for externals definitions. An externals definition is a mapping
of alocal directory to the URL—and possibly a particular revision—of a versioned resource. In Subver-
sion, you declare externals definitions in groups using the svn: ext er nal s property. You can create
or modify this property using svn propset or svn propedit (see the section called “Why Properties?’). It
can be set on any versioned directory, and its value is a multi-line table of subdirectories (relative to the
versioned directory on which the property is set) and fully qualified, absolute Subversion repository

URLs.

$ svn propget svn:externals calc

t hi rd- party/ sounds http://sounds. r ed- bean. com r epos

t hi rd- party/skins htt p://skins.red-bean. confrepositories/skinproj
third-party/skins/toolkit -r21 http://svn.red-bean. conirepos/skin-naker

The convenience of thesvn: ext er nal s property isthat onceit is set on aversioned directory, every-
one who checks out a working copy with that directory also gets the benefit of the externals definition.
In other words, once one person has made the effort to define those nested working copy checkouts, no
one else has to bother—Subversion will, upon checkout of the original working copy, also checkout the
external working copies.

Note the previous external s definition example. When someone checks out a working copy of the cal ¢
directory, Subversion a so continues to checkout the items found in its externals definition.

$ svn checkout http://svn.exanpl e.com repos/calc
A calc

A cal c/ Makefile

A calc/integer.c

A calc/button.c

Checked out revision 148.

Fetching external iteminto calc/third-party/sounds
A cal c/third-party/sounds/di ng. ogg

A cal c/third-party/sounds/dong. ogg

A cal c/third-party/sounds/cl ang. ogg

A cal ¢/ third- party/ sounds/ bang. ogg
A calc/third-party/sounds/twang. ogg
Checked out revision 14,

Fetching external iteminto calc/third-party/skins

If you need to change the externals definition, you can do so using the regular property modification
subcommands. When you commit a change to the svn: ext er nal s property, Subversion will syn-
chronize the checked-out items against the changed externals definition when you next run svn update.

152

Advanced Topics

The same thing will happen when others update their working copies and receive your changes to the
externals definition.

The svn status command also recognizes externals definitions, displaying a status code of X for the dis-
joint subdirectories into which externals are checked out, and then recursing into those subdirectories to
display the status of the external items themselves.

o .

_) Y ou should strongly consider using explicit revision numbersin all of your externals defin-
itions. Doing so means that you get to decide when to pull down a different snapshot of ex-
ternal information, and exactly which snapshot to pull. Besides the common sense aspect
of not being surprised by changes to third-party repositories that you might not have any
control over, using explicit revision numbers also means that as you backdate your work-
ing copy to a previous revision, your externals definitions will also revert to the way they
looked in that previous revision, which in turn means that the external working copies will
be updated to match they way they looked back when your repository was at that previous
revision. For software projects, this could be the difference between a successful and a
failed build of an older snapshot of your complex codebase.

The support that exists for externals definitions in Subversion today can be a little misleading, though.
First, an externals definition can only point to directories, not files. Second, the externals definition can-
not point to relative paths (paths like . . /. . / ski ns/ myski n). Third, the working copies created via
the externals definition support are still disconnected from the primary working copy (on whose ver-
sioned directoriesthe svn: ext er nal s property was actually set). And Subversion still only truly op-
erates on non-disjoint working copies. So, for example, if you want to commit changes that you've made
in one or more of those external working copies, you must run svn commit explicitly on those working
copies—committing on the primary working copy will not recurse into any external ones.

Also, since the definitions themselves use absolute URLS, moving or copying a directory to which they
are attached will not affect what gets checked out as an external (though the relative local target subdir-
ectory will, of course, move with renamed directory). This can be confusing—even frustrating—in cer-
tain situations. For example, if you use externals definitions on a directory in your / t r unk develop-
ment line which point to other areas of that same line, and then you use svn copy to branch that line to
some new location / br anches/ ny- br anch, the externals definitions on items in your new branch
will still refer to versioned resourcesin/ t r unk. Be aware, too, that if you need to re-parent your work-
ing copy (using svn switch --relocate), externals definitions will not also be re-parented.

Finally, there might be times when you would prefer that svn subcommands would not recognize or oth-
erwise operate on the external working copies created as the result of externals definition handling. In
those instances, you can passthe - - i gnor e- ext er nal s option to the subcommand.

Vendor branches

Asis especialy the case when developing software, the data that you maintain under version control is
often closely related to, or perhaps dependent upon, someone else's data. Generally, the needs of your
project will dictate that you stay as up-to-date as possible with the data provided by that external entity
without sacrificing the stability of your own project. This scenario plays itself out all the
time—anywhere that the information generated by one group of people has a direct effect on that which
is generated by another group.

For example, software developers might be working on an application which makes use of a third-party
library. Subversion has just such a relationship with the Apache Portable Runtime library (see the sec-
tion called “The Apache Portable Runtime Library”). The Subversion source code depends on the APR
library for all its portability needs. In earlier stages of Subversion's development, the project closely
tracked APR's changing API, always sticking to the “bleeding edge” of the library's code churn. Now
that both APR and Subversion have matured, Subversion attempts to synchronize with APR's library

153

Advanced Topics

API only at well-tested, stable release points.

Now, if your project depends on someone else's information, there are several ways that you could at-
tempt to synchronize that information with your own. Most painfully, you could issue oral or written in-
structions to all the contributors of your project, telling them to make sure that they have the specific
versions of that third-party information that your project needs. If the third-party information is main-
tained in a Subversion repository, you could also use Subversion's externals definitions to effectively
“pin down” specific versions of that information to some location in your own working copy directory
(see the section called “Externals Definitions”).

But sometimes you want to maintain custom modifications to third-party data in your own version con-
trol system. Returning to the software devel opment example, programmers might need to make modific-
ations to that third-party library for their own purposes. These modifications might include new func-
tionality or bug fixes, maintained internally only until they become part of an official release of the
third-party library. Or the changes might never be relayed back to the library maintainers, existing solely
as custom tweaks to make the library further suit the needs of the software devel opers.

Now you face an interesting situation. Your project could house its custom modifications to the third-
party datain some digointed fashion, such as using patch files or full-fledged alternate versions of files
and directories. But these quickly become maintenance headaches, requiring some mechanism by which
to apply your custom changes to the third-party data, and necessitating regeneration of those changes
with each successive version of the third-party data that you track.

The solution to this problem is to use vendor branches. A vendor branch is a directory tree in your own
version control system that contains information provided by a third-party entity, or vendor. Each ver-
sion of the vendor's data that you decide to absorb into your project is called a vendor drop.

Vendor branches provide two key benefits. First, by storing the currently supported vendor drop in your
own version control system, the members of your project never need to question whether they have the
right version of the vendor's data. They simply receive that correct version as part of their regular work-
ing copy updates. Secondly, because the data lives in your own Subversion repository, you can store
your custom changes to it in-place—you have no more need of an automated (or worse, manual) method
for swapping in your customizations.

General Vendor Branch Management Procedure

Managing vendor branches generally works like this. You create a top-level directory (such as /
vendor) to hold the vendor branches. Then you import the third party code into a subdirectory of that
top-level directory. Y ou then copy that subdirectory into your main development branch (for example, /
t runk) at the appropriate location. You always make your local changes in the main development
branch. With each new release of the code you are tracking you bring it into the vendor branch and
merge the changesinto/ t r unk, resolving whatever conflicts occur between your local changes and the
upstream changes.

Perhaps an example will help to clarify this algorithm. We'll use a scenario where your development
team is creating a calculator program that links against a third-party complex number arithmetic library,
libcomplex. We'll begin with the initial creation of the vendor branch, and the import of the first vendor
drop. Welll call our vendor branch directory | i bconpl ex, and our code drops will go into a subdirect-
ory of our vendor branch called cur r ent . And since svn import creates al the intermediate parent dir-
ectories it needs, we can actually accomplish both of these steps with a single command.

$ svn inport /path/to/libconplex-1.0 \
http://svn. exanpl e. coni repos/ vendor/| i bconpl ex/ current \
-m'inporting initial 1.0 vendor drop'

We now have the current version of the libcomplex source code in [/

154

Advanced Topics

vendor/ | i bconpl ex/ current. Now, we tag that version (see the section called “Tags’) and then
copy it into the main development branch. Our copy will create a new directory called | i bconpl ex in
our existing cal c¢ project directory. It isin this copied version of the vendor data that we will make our
customizations.

$ svn copy http://svn.exanpl e.com repos/vendor/|ibconpl ex/current \
http://svn. exanpl e. coni repos/vendor/|i bconplex/ 1.0 \
-m'tagging |ibconplex-1.0

$ svn copy http://svn. exanpl e. conl repos/vendor/|ibconplex/1.0 \
http://svn. exanpl e. con repos/ cal ¢/l i bconpl ex \
-m'bringing |ibconmplex-1.0 into the main branch’

We check out our project's main branch—which now includes a copy of the first vendor drop—and we
get to work customizing the libcomplex code. Before we know it, our modified version of libcomplex is
now completely integrated into our calculator program. 1

A few weeks later, the developers of libcomplex release a new version of their library—version
1.1—which contains some features and functionality that we really want. We'd like to upgrade to this
new version, but without losing the customizations we made to the existing version. What we essentially
would like to do is to replace our current baseline version of libcomplex 1.0 with a copy of libcomplex
1.1, and then re-apply the custom modifications we previously made to that library to the new version.
But we actually approach the problem from the other direction, applying the changes made to libcom-
plex between versions 1.0 and 1.1 to our modified copy of it.

To perform this upgrade, we checkout a copy of our vendor branch, and replace the code in the cur -
r ent directory with the new libcomplex 1.1 source code. We quite literally copy new files on top of ex-
isting files, perhaps exploding the libcomplex 1.1 release tarball atop our existing files and directories.
The goal here isto make our cur r ent directory contain only the libcomplex 1.1 code, and to ensure
that all that code is under version control. Oh, and we want to do this with as little version control his-
tory disturbance as possible.

After replacing the 1.0 code with 1.1 code, svn status will show files with local modifications as well
as, perhaps, some unversioned or missing files. If we did what we were supposed to do, the unversioned
files are only those new files introduced in the 1.1 release of libcomplex—we run svn add on those to
get them under version control. The missing files are files that were in 1.0 but not in 1.1, and on those
paths we run svn delete. Finally, once our cur r ent working copy contains only the libcomplex 1.1
code, we commit the changes we made to get it looking that way.

Our cur r ent branch now contains the new vendor drop. We tag the new version (in the same way we

previously tagged the version 1.0 vendor drop), and then merge the differences between the tag of the
previous version and the new current version into our main development branch.

$ cd wor ki ng-copi es/cal ¢

$ svn nmerge http://svn. exanpl e. conf repos/ vendor/|ibconpl ex/ 1.0 \
http://svn. exanpl e. conl repos/vendor /| i bconpl ex/current \
[i bconpl ex

...# resolve all the conflicts between their changes and our changes
$ svn commit -m'nmerging |libconplex-1.1 into the main branch’

In the trivial use case, the new version of our third-party tool would look, from a files-and-directories
point of view, just like the previous version. None of the libcomplex source files would have been de-
leted, renamed or moved to different locations—the new version would contain only textual modifica-

"And entirely bug-free, of course!

155

Advanced Topics

tions against the previous one. In a perfect world, our modifications would apply cleanly to the new ver-
sion of thelibrary, with absolutely no complications or conflicts.

But things aren't lways that simple, and in fact it is quite common for source files to get moved around
between releases of software. This complicates the process of ensuring that our modifications are till
valid for the new version of code, and can quickly degrade into a situation where we have to manually
recreate our customizations in the new version. Once Subversion knows about the history of a given
source file—including all its previous locations—the process of merging in the new version of the lib-
rary is pretty simple. But we are responsible for telling Subversion how the source file layout changed
from vendor drop to vendor drop.

svn_load_dirs.pl

Vendor drops that contain more than a few deletes, additions and moves complicate the process of up-
grading to each successive version of the third-party data. So Subversion supplies the svn_load_dirs.pl
script to assist with this process. This script automates the importing steps we mentioned in the general
vendor branch management procedure to make sure that mistakes are minimized. You will still be re-
sponsible for using the merge commands to merge the new versions of the third-party data into your
main development branch, but svn_load_dirs.pl can help you more quickly and easily arrive at that
stage.

In short, svn_load_dirs.pl is an enhancement to svn import that has several important characteristics:

e It can berun at any point in time to bring an existing directory in the repository to exactly match an
external directory, performing all the necessary adds and deletes, and optionally performing moves,
too.

» It takes care of complicated series of operations between which Subversion requires an intermediate
commit—such as before renaming afile or directory twice.

» It will optionally tag the newly imported directory.

» It will optionally add arbitrary propertiesto files and directories that match aregular expression.

svn_load_dirs.pl takes three mandatory arguments. The first argument is the URL to the base Subver-
sion directory to work in. This argument is followed by the URL—rélative to the first argument—into
which the current vendor drop will be imported. Finally, the third argument is the local directory to im-
port. Using our previous example, atypical run of svn_load_dirs.pl might look like:

$ svn_load_dirs.pl http://svn.exanpl e.con repos/vendor/|ibconplex \
current \
/path/to/libconplex-1.1

You can indicate that you'd like svn_load_dirs.pl to tag the new vendor drop by passing the -t com-
mand-line option and specifying a tag name. This tag is another URL relative to the first program argu-
ment.

$ svn_load_dirs.pl -t libcomplex-1.1 \
http://svn. exanpl e. coni repos/vendor/|i bconpl ex \
current \
/path/to/libconplex-1.1

156

Advanced Topics

When you run svn_load_dirs.pl, it examines the contents of your existing “current” vendor drop, and
compares them with the proposed new vendor drop. In the trivial case, there will be no files that are in
one version and not the other, and the script will perform the new import without incident. If, however,
there are discrepancies in the file layouts between versions, svn_load_dirs.pl will prompt you for how
you would like to resolve those differences. For example, you will have the opportunity to tell the script
that you know that the file mat h. ¢ in version 1.0 of libcomplex was renamed to ari t hmeti c. c in
libcomplex 1.1. Any discrepancies not explained by moves are treated as regular additions and del etions.

The script also accepts a separate configuration file for setting properties on files and directories match-
ing a regular expression that are added to the repository. This configuration file is specified to
svn_load_dirs.pl using the - p command-line option. Each line of the configuration file is a whitespace-
delimited set of two or four values: a Perl-style regular expression to match the added path against, a
control keyword (either br eak or cont), and then optionally a property name and value.

\. png$ br eak svn: m nme-type i mage/ png

\.] pe?g$% br eak svn: m ne-type i mage/ | peg

\. mBu$ cont svn: m ne-type audi o/ x- npegur |
\. nBu$ break svn:eol-style LF

L* br eak svn: eol -style native

For each added path, the configured property changes whose regular expression matches the path are ap-
plied in order, unless the control specification is br eak (which means that no more property changes
should be applied to that path). If the control specification is cont —an abbreviation for
cont i nue—then matching will continue with the next line of the configuration file.

Any whitespace in the regular expression, property name, or property value must be surrounded by
either single or double quote characters. Y ou can escape quote characters that are not used for wrapping
whitespace by preceding them with a backslash (\) character. The backslash escapes only quotes when
parsing the configuration file, so do not protect any other characters beyond what is necessary for the
regular expression.

Localization

Localization is the act of making programs behave in a region-specific way. When a program formats
numbers or dates in a way specific to your part of the world, or prints messages (or accepts input) in
your native language, the program is said to be localized. This section describes steps Subversion has
made towards localization.

Understanding locales

Most modern operating systems have a notion of the “current locale’—that is, the region or country
whose localization conventions are honored. These conventions—typically chosen by some runtime
configuration mechanism on the computer—affect the way in which programs present data to the user,
aswell as the way in which they accept user input.

On Unix-like systems, you can check the values of the locale-related runtime configuration options by
running the locale command:

$ | ocal e

LANG=

LC COLLATE="C"
LC CTYPE="C"
LC_MESSAGES="C"
LC_MONETARY="C"
LC NUMERI C="C"

157

Advanced Topics

LC_TI ME="C"
LC_ALL="C"

The output is alist of locale-related environment variables and their current values. In this example, the
variables are all set to the default Clocale, but users can set these variables to specific country/language
code combinations. For example, if one were to set the LC_TI ME variable to f r _CA, then programs
would know to present time and date information formatted according a French-speaking Canadian's ex-
pectations. And if one wereto set the LC_MESSAGES variableto zh_ TW then programs would know to
present human-readable messages in Traditional Chinese. Setting the LC_ALL variable has the effect of
changing every locale variable to the same value. The value of LANG is used as a default value for any
locale variable that is unset. To seethe list of available locales on a Unix system, run the command loc-
ale-a.

On Windows, locale configuration is done via the “Regional and Language Options’ control panel item.
There you can view and select the values of individual settings from the available locales, and even cus-
tomize (at asickening level of detail) several of the display formatting conventions.

Subversion's use of locales

The Subversion client, svn, honors the current locale configuration in two ways. First, it notices the
value of the LC_MESSAGES variable and attempts to print all messages in the specified language. For
example:

$ export LC _MESSAGES=de_ DE

$ svn hel p cat

cat: G bt den Inhalt der angegebenen Dateien oder URLs aus.
Aufruf: cat ZIEL[@REV].. .

This behavior works identically on both Unix and Windows systems. Note, though, that while your op-
erating system might have support for a certain locale, the Subversion client still may not be able to
speak the particular language. In order to produce localized messages, human volunteers must provide
trandations for each language. The tranglations are written using the GNU gettext package, which res-
ults in trandation modules that end with the . no filename extension. For example, the German transla-
tion file is named de. no. These trandation files are installed somewhere on your system. On Unix,
they typicaly live in /usr/share/l ocal e/, while on Windows they're often found in the
\'shar e\l ocal e\ folder in Subversion'sinstallation area. Once installed, a module is named after the
program it provides trandlations for. For example, the de. no file may ultimately end up installed as /

usr/share/l ocal e/ de/ LC_MESSAGES/ subver si on. no. By browsing the installed . no
files, you can see which languages the Subversion client is able to speak.

The second way in which the locale is honored involves how svn interprets your input. The repository
stores all paths, filenames, and log messages in Unicode, encoded as UTF-8. In that sense, the repository
is internationalized—that is, the repository is ready to accept input in any human language. This means,
however, that the Subversion client is responsible for sending only UTF-8 filenames and log messages
into the repository. In order to do this, it must convert the data from the native locale into UTF-8.

For example, suppose you create a file namedcaf f €. t xt , and then when committing the file, you
write the log message as “Adesso il caffe é piu forte”. Both the filename and log message contain non-
ASCII characters, but because your locale is set to i t _| T, the Subversion client knows to interpret
them as Italian. It uses an Italian character set to convert the data to UTF-8 before sending them off to
the repository.

Note that while the repository demands UTF-8 filenames and log messages, it does not pay attention to
file contents. Subversion treats file contents as opaque strings of bytes, and neither client nor server

158

Advanced Topics

makes an attempt to understand the character set or encoding of the contents.

Char acter set conversion errors

While using Subversion, you might get hit with an error related to character set conversions:

svn: Can't convert string fromnative encoding to ' UTF-8':

svn: Can't convert stri ng from'UTF-8'" to native encoding:

Errors like this typically occur when the Subversion client has received a UTF-8 string from the repository,
but not all of the charactersin that string can be represented using the encoding of the current locale. For ex-
ample, if your localeis en_US but a collaborator has committed a Japanese filename, you're likely to see this
error when you receive the file during an svn update.

The solution is either to set your locale to something which can represent the incoming UTF-8 data, or to
change the filename or log message in the repository. (And don't forget to slap your collaborator's
hand—projects should decide on common languages ahead of time, so that all participants are using the same
locale.)

Using External Differencing Tools

The presence of --di ff-cnmd and - - di ff 3- cnd options, and similarly named runtime configura-
tion parameters (see the section called “Config”), can lead to a false notion of how easy it is to use ex-
ternal differencing (or “diff”) and merge tools with Subversion. While Subversion can use most of popu-
lar such tools available, the effort invested in setting this up often turns out to be non-trivial.

The interface between Subversion and external diff and merge tools harkens back to a time when Sub-
version's only contextual differencing capabilities were built around invocations of the GNU diffutils
toolchain, specifically the diff and diff3 utilities. To get the kind of behavior Subversion needed, it
called these utilities with more than a handful of options and parameters, most of which were quite spe-
cific to the utilities, Some time later, Subversion grew its own internal differencing library, and as afail-
over mechanism, ? the - - di f f - cnd and - - di f f 3- cnd options were added to the Subversion com-
mand-line client so users could more easily indicate that they preferred to use the GNU diff and diff3
utilities instead of the newfangled internal diff library. If those options were used, Subversion would
simply ignore the internal diff library, and fall back to running those external programs, lengthy argu-
ment lists and all. And that's where things remain today.

It didn't take long for folks to realize that having such easy configuration mechanisms for specifying that
Subversion should use the external GNU diff and diff3 utilities located at a particular place on the sys-
tem could be applied toward the use of other diff and merge toals, too. After all, Subversion didn't actu-
ally verify that the things it was being told to run were members of the GNU diffutils toolchain. But the
only configurable aspect of using those external toolsis their location on the system—not the option set,
parameter order, etc. Subversion continues throwing all those GNU utility options at your external diff
tool regardless of whether or not that program can understand those options. And that's where things get
unintuitive for most users.

The key to using external diff and merge tools (other than GNU diff and diff3, of course) with Subver-
sion is to use wrapper scripts which convert the input from Subversion into something that your differ-
encing tool can understand, and then to convert the output of your tool back into aformat which Subver-
sion expects—the format that the GNU tools would have used. The following sections cover the specif-
ics of those expectations.

25bversion developers are good, but even the best make mistakes.

159

Advanced Topics

Note

Q/ The decision on when to fire off a contextual diff or merge as part of alarger Subversion
operation is made entirely by Subversion, and is affected by, among other things, whether
or not the files being operated on are human-readable as determined by their
svn: m nme-type property. This means, for example, that even if you had the niftiest Mi-
crosoft Word-aware differencing or merging tool in the Universe, it would never be in-
voked by Subversion so long as your versioned Word documents had a configured MIME
type that denoted that they were not human-readable (such as appl i cati on/ nswor d).
For more about MIME type settings, see the section called “svn: mi me-t ype”

External diff

Subversion calls external diff programs with parameters suitable for the GNU diff utility, and expects
only that the external program return with a successful error code. For most aternative diff program,
only the sixth and seventh arguments, the paths of the files which represent the left and right sides of the
diff, respectively, are of interest. Note that Subversion runs the diff program once per modified file
covered by the Subversion operation, so if your program runs in an asynchronous fashion (or
“backgrounded”), you might have several instances of it all running simultaneously. Finally, Subversion
expects that your program return an errorcode of O if your program detected differences, or 1 if it did
not—any other errorcode is considered afatal error. 1

Example 7.2, “diffwrap.sh” and Example 7.3, “diffwrap.bat” are templates for external diff tool wrap-
persin the Bourne shell and Windows batch scripting languages, respectively.

Example 7.2. diffwrap.sh

#!/ bi n/ sh

Configure your favorite diff program here.
DI FF="/usr /1 ocal / bi n/ my-di ff-tool"

Subversion provides the paths we need as the sixth and seventh

paraneters.

LEFT=${ 6}

Rl GHT=${ 7}

Call the diff command (change the following Iine to make sense for
your merge program.

$DIFF --left $LEFT --right $RI GHT

Return an errorcode of 0 if no differences were detected, 1 if sone were.
Any other errorcode will be treated as fatal.

Example 7.3. diffwrap.bat

@CHO OFF
REM Confi gure your favorite diff program here.

3The GNU diff manual page putsit thisway: “An exit status of 0 means no differences were found, 1 means some differences were found, and 2
means trouble.”

160

Advanced Topics

SET DI FF="C:\ Program Fi | es\ Funky Stuff\My D ff Tool . exe"

REM Subver si on provi des the paths we need as the sixth and seventh
REM par anet er s.

SET LEFT=%

SET Rl GHT=%

REM Cal|l the diff command (change the following line to make sense for
REM your nmnerge progran).
Wl FF% --1eft %AEFT% --right %Rl GHT%

REM Return an errorcode of O if no differences were detected, 1 if sone were.
REM Any ot her errorcode will be treated as fatal.

External diff3

Subversion calls external merge programs with parameters suitable for the GNU diff3 utility, expecting
that the external program return with a successful error code and that the full file contents which result
from the completed merge operation are printed on the standard output stream (so that Subversion can
redirect them into the appropriate version controlled file). For most alternative merge programs, only the
ninth, tenth, and eleventh arguments, the paths of the files which represent the “mine’, “older”, and
“yours’ inputs, respectively, are of interest. Note that because Subversion depends on the output of your
merge program, you wrapper script must not exit before that output has been delivered to Subversion.
When it finally does exit, it should return an errorcode of O if the merge was successful, or 1 if unre-
solved conflicts remain in the output—any other errorcode is considered a fatal error.

Example 7.4, “diff3wrap.sh” and Example 7.5, “diff3wrap.bat” are templates for external merge tool
wrappers in the Bourne shell and Windows batch scripting languages, respectively.

Example 7.4. diff3wrap.sh

#!/ bi n/ sh

Configure your favorite diff3/merge program here.
DI FF3="/usr /| ocal / bi n/ my- mer ge-t ool "

Subversion provides the paths we need as the ninth, tenth, and el eventh
paraneters.

M NE=${ 9}

OLDER=${ 10}

YOURS=${ 11}

Call the nerge conmand (change the following line to nake sense for
your merge program.
$DI FF3 --older $OLDER --nmine $M NE --yours $YOURS

After performng the nmerge, this script needs to print the contents
of the nmerged file to stdout. Do that in whatever way you see fit.
Return an errorcode of 0 on successful nmerge, 1 if unresolved conflicts
remain in the result. Any other errorcode will be treated as fatal.

Example 7.5. diff3wrap.bat

161

Advanced Topics

@ECHO OFF

REM Confi gure your favorite diff3/merge program here.
SET DI FF3="C:\ Program Fi | es\ Funky Stuff\M/ Merge Tool . exe"

REM Subversi on provi des the paths we need as the ninth, tenth, and el eventh
REM paranmeters. But we only have access to nine paraneters at a tine, so we
REM shi ft our nine-paraneter window twice to let us get to what we need.

SH FT

SH FT

SET M NE=%/

SET OLDER=%8

SET YOURS=%9

REM Cal | the merge command (change the following Iine to make sense for
REM your rmerge progran.

%0l FF3% - - ol der %LDER% - - mi ne %V NE% - - your s %rOURS%

REM After performng the nmerge, this script needs to print the contents
REM of the nmerged file to stdout. Do that in whatever way you see fit.

REM Return an errorcode of O on successful nerge, 1 if unresolved conflicts
REM remain in the result. Any other errorcode will be treated as fatal.

Subversion Repository URLSs

Asillustrated throughout this book, Subversion uses URLSs to identify versioned resourcesin Subversion
repositories. For the most part, these URLSs use the standard syntax, allowing for server names and port
numbers to be specified as part of the URL.:

$ svn checkout http://svn.exanpl e.com 9834/ repos

But there are some nuances in Subversion's handling of URLs that are notable. For example, URLSs con-
taining the fi | e: access method (used for local repositories) must, in accordance with convention,
have either a server name of | ocal host or no server name at al:

$ svn checkout file:///path/to/repos

$ svn checkout file://local host/path/to/repos

Also, users of the fi | e: scheme on Windows platforms will need to use an unofficially “standard”
syntax for accessing repositories that are on the same machine, but on a different drive than the client's
current working drive. Either of the two following URL path syntaxes will work where X is the drive on
which the repository resides:

C.\> svn checkout file:///X /path/tolrepos

C:\> svn checkout "file: /11 X|/path/tolrepos"

In the second syntax, you need to quote the URL so that the vertical bar character is not interpreted as a

162

Advanced Topics

pipe. Also, note that a URL uses ordinary slashes even though the native (non-URL) form of a path on
Windows uses backslashes.

Finally, it should be noted that the Subversion client will automatically encode URLS as necessary, just
like aweb browser does. For example, if aURL contains a space or upper-ASCI| character:

$ svn checkout "http://host/path with space/project/espafa"

...then Subversion will escape the unsafe characters and behave asif you had typed:

$ svn checkout http://host/pat h%20w t h%20space/ proj ect/ espa%3¥Bla

If the URL contains spaces, be sure to place it within quote marks, so that your shell treats the whole
thing as a single argument to the svn program.

163

Chapter 8. Developer Information

Subversion is an open-source software project developed under an Apache-style software license. The
project is financially backed by CollabNet, Inc., a California-based software development company. The
community that has formed around the development of Subversion aways welcomes new members who
can donate their time and attention to the project. Volunteers are encouraged to assist in any way they
can, whether that means finding and diagnosing bugs, refining existing source code, or fleshing out
whole new features.

This chapter is for those who wish to assist in the continued evolution of Subversion by actualy getting
their hands dirty with the source code. We will cover some of the software's more intimate details, the
kind of technical nitty-gritty that those developing Subversion itself—or writing entirely new tools
based on the Subversion libraries—should be aware of. If you don't foresee yourself participating with
the software at such alevel, fed free to skip this chapter with confidence that your experience as a Sub-
version user will not be affected.

Layered Library Design

Subversion has a modular design, implemented as a collection of C libraries. Each library has a well-
defined purpose and interface, and most modules are said to exist in one of three main layers—the Re-
pository Layer, the Repository Access (RA) Layer, or the Client Layer. We will examine these layers
shortly, but first, see our brief inventory of Subversion's librariesin Table 8.1, “A Brief Inventory of the
Subversion Libraries’. For the sake of consistency, we will refer to the libraries by their extensionless
Unix library names (e.g.: libsvn_fs, libsvn_wc, mod_dav_svn).

Table8.1. A Brief Inventory of the Subversion Libraries

Library Description

libsvn_client Primary interface for client programs

libsvn_delta Tree and byte-stream differencing routines

libsvn_diff Contextual differencing and merging routines

libsvn_fs Filesystem commons and module |oader

libsvn_fs base The Berkeley DB filesystem back-end

libsvn fs fs The native filesystem (FSFS) back-end

libsvn_ra Repository Access commons and module loader

libsvn_ra dav The WebDAV Repository Access module

libsvn_ra loca Thelocal Repository Access module

libsvn_ra svn The custom protocol Repository Access module

libsvn_repos Repository interface

libsvn_subr Miscellaneous helpful subroutines

libsvn_wc The working copy management library

mod_authz_svn Apache authorization module for Subversion repositories
access viaWebDAV

mod_dav_svn Apache module for mapping WebDAV operations to
Subversion ones

The fact that the word “miscellaneous’ only appears once in Table 8.1, “A Brief Inventory of the Sub-

164

Developer Information

version Libraries’ is a good sign. The Subversion development team is serious about making sure that
functionality lives in the right layer and libraries. Perhaps the greatest advantage of the modular design
isits lack of complexity from a developer's point of view. As a developer, you can quickly formulate
that kind of “big picture” that allows you to pinpoint the location of certain pieces of functionality with
relative ease.

Another benefit of modularity is the ability to replace a given module with a whole new library that im-
plements the same APl without affecting the rest of the code base. In some sense, this happens within
Subversion already. The libsvn_ra dav, libsvn_ra local, and libsvn_ra svn al implement the same in-
terface. And all three communicate with the Repository Layer—Ilibsvn _ra dav and libsvn_ra_svn do so
across a network, and libsvn_ra local connectsto it directly. The libsvn_fs base and libsvn_fs fslibrar-
ies are another example of this.

The client itself also highlights modularity in the Subversion design. While Subversion itself comes with
only acommand-line client program, there are several third party programs which provide various forms
of client GUI. These GUIs use the same APIs that the stock command-line client does. Subversion's
libsvn_client library is the one-stop shop for most of the functionality necessary for designing a working
Subversion client (see the section called “Client Layer”).

Repository Layer

When referring to Subversion's Repository Layer, we're generally talking about two libraries—the re-
pository library, and the filesystem library. These libraries provide the storage and reporting mechan-
isms for the various revisions of your version-controlled data. This layer is connected to the Client Layer
via the Repository Access Layer, and is, from the perspective of the Subversion user, the stuff at the
“other end of theline.”

The Subversion Filesystem is accessed via the libsvn_fs API, and is not a kernel-level filesystem that
one would install in an operating system (like the Linux ext2 or NTFS), but a virtua filesystem. Rather
than storing “files” and “directories’ as rea files and directories (as in, the kind you can navigate
through using your favorite shell program), it uses one of two available abstract storage
backends—either a Berkeley DB database environment, or a flat-file representation. (To learn more
about the two repository back-ends, see the section called “Repository Data Stores’.) However, there
has been considerable interest by the development community in giving future releases of Subversion
the ability to use other back-end database systems, perhaps through a mechanism such as Open Database
Connectivity (ODBC).

The filesystem API exported by libsvn_fs contains the kinds of functionality you would expect from any
other filesystem API: you can create and remove files and directories, copy and move them around,
modify file contents, and so on. It also has features that are not quite as common, such as the ability to
add, modify, and remove metadata (“properties’) on each file or directory. Furthermore, the Subversion
Filesystem is a versioning filesystem, which means that as you make changes to your directory tree,
Subversion remembers what your tree looked like before those changes. And before the previous
changes. And the previous ones. And so on, al the way back through versioning time to (and just bey-
ond) the moment you first started adding things to the filesystem.

All the modifications you make to your tree are done within the context of a Subversion transaction. The
following is asimplified general routine for modifying your filesystem:

1. Begin aSubversion transaction.

2. Make your changes (adds, deletes, property modifications, etc.).

3. Commit your transaction.

Once you have committed your transaction, your filesystem modifications are permanently stored as his-
torical artifacts. Each of these cycles generates a single new revision of your tree, and each revision is

165

Developer Information

forever accessible as an immutable snapshot of “the way things were.”

The Transaction Distraction

The notion of a Subversion transaction, especially given its close proximity to the database code in libsvn_fs,
can become easily confused with the transaction support provided by the underlying database itself. Both
types of transaction exist to provide atomicity and isolation. In other words, transactions give you the ability
to perform a set of actionsin an “all or nothing” fashion—either al the actions in the set complete with suc-
cess, or they all get treated as if none of them ever happened—and in a way that does not interfere with other
processes acting on the data.

Database transactions generally encompass small operations related specifically to the modification of datain
the database itself (such as changing the contents of atable row). Subversion transactions are larger in scope,
encompassing higher-level operations like making modifications to a set of files and directories which are in-
tended to be stored as the next revision of the filesystem tree. If that isn't confusing enough, consider this:
Subversion uses a database transaction during the creation of a Subversion transaction (so that if the creation
of Subversion transaction fails, the database will look as if we had never attempted that creation in the first
place)!

Fortunately for users of the filesystem API, the transaction support provided by the database system itself is
hidden almost entirely from view (as should be expected from a properly modularized library scheme). It is
only when you start digging into the implementation of the filesystem itself that such things become visible
(or interesting).

Most of the functionality provided by the filesystem interface comes as an action that occurs on a
filesystem path. That is, from outside of the filesystem, the primary mechanism for describing and ac-

cessing the individual revisions of files and directories comes through the use of path strings like /

f oo/ bar, just as if you were addressing files and directories through your favorite shell program. You
add new files and directories by passing their paths-to-be to the right API functions. Y ou query for in-

formation about them by the same mechanism.

Unlike most filesystems, though, a path alone is not enough information to identify afile or directory in
Subversion. Think of a directory tree as a two-dimensional system, where a node's siblings represent a
sort of left-and-right motion, and descending into subdirectories a downward motion. Figure 8.1, “Files

and directoriesin two dimensions’ shows atypical representation of atree as exactly that.

Figure8.1. Filesand directoriesin two dimensions

[D
foo/

o

- |
I}alj baz hhq

[

9B

166

Developer Information

Of course, the Subversion filesystem has a nifty third dimension that most filesystems do not
have—Time! * In the filesystem interface, nearly every function that has a pat h argument also expects
ar oot argument. This svn_fs root_t argument describes either a revision or a Subversion transaction
(which is usualy just a revision-to-be), and provides that third-dimensional context needed to under-
stand the difference between / f 0o/ bar in revision 32, and the same path as it exists in revision 98.
Figure 8.2, “Versioning time—the third dimension!” shows revision history as an added dimension to
the Subversion filesystem universe.

Figure 8.2. Versioning time—thethird dimension!

foo:5

biloal=5

As we mentioned earlier, the libsvn_fs APl looks and feels like any other filesystem, except that it has
this wonderful versioning capability. It was designed to be usable by any program interested in a ver-
sioning filesystem. Not coincidentally, Subversion itself is interested in that functionality. But while the
filesystem API should be sufficient for basic file and directory versioning support, Subversion wants
more—and that is where libsvn_repos comesin.

The Subversion repository library (libsvn_repos) is basically a wrapper library around the filesystem
functionality. Thislibrary is responsible for creating the repository layout, making sure that the underly-
ing filesystem isinitialized, and so on. Libsvn_repos also implements a set of hooks—scripts that are ex-
ecuted by the repository code when certain actions take place. These scripts are useful for notification,
authorization, or whatever purposes the repository administrator desires. This type of functionality, and
other utilities provided by the repository library, are not strictly related to implementing a versioning
filesystem, which iswhy it was placed into its own library.

Developers who wish to use the libsvn_repos API will find that it is not a complete wrapper around the
filesystem interface. That is, only certain major events in the general cycle of filesystem activity are
wrapped by the repository interface. Some of these include the creation and commit of Subversion trans-
actions, and the modification of revision properties. These particular events are wrapped by the reposit-
ory layer because they have hooks associated with them. In the future, other events may be wrapped by
the repository API. All of the remaining filesystem interaction will continue to occur directly via the
libsvn_fs API, though.

For example, here is a code segment that illustrates the use of both the repository and filesystem inter-

YWe understand that this may come as a shock to sci-fi fans who have long been under the impression that Time was actually the fourth dimen-
sion, and we apologize for any emotional traumainduced by our assertion of a different theory.

167

Developer Information

faces to create a new revision of the filesystem in which a directory is added. Note that in this example
(and all others throughout this book), the SVN_ERR() macro simply checks for a non-successful error
return from the function it wraps, and returns that error if it exists.

Example 8.1. Using the Repository L ayer

/* Create a new directory at the path NEWD RECTORY in the Subversion
repository |l ocated at REPOS PATH. Performall nenory allocation in
POCL. This function will create a new revision for the addition of
NEW DI RECTORY. */

static svn error_t *

make new directory (const char *repos_path,

const char *new directory,
apr_pool t *pool)

svn_error_t *err,;
svn_repos_t *repos;
svn_fs t *fs;
svn_revnumt youngest_rev;
svn_fs_ txn_t *txn;
svn_fs_root_t *txn_root;
const char *conflict_str;

/* Open the repository |located at REPOS PATH. */
SVN_ERR (svn_repos_open (&repos, repos_path, pool));

/* Get a pointer to the filesystemobject that is stored in
REPCS. */
fs = svn_repos_fs (repos);

/* Ask the filesystemto tell us the youngest revision that
currently exists. */
SVN_ERR (svn_fs_youngest _rev (&oungest _rev, fs, pool));

/* Begin a new transaction that is based on YOUNGEST_REV. W are
less likely to have our |later commt rejected as conflicting if we
al ways try to make our changes agai nst a copy of the |atest snapshot
of the filesystemtree. */

SVN ERR (svn_fs begin_txn (& xn, fs, youngest rev, pool));

/* Now that we have started a new Subversion transaction, get a root
object that represents that transaction. */
SVN _ERR (svn_fs_txn_root (& xn_root, txn, pool));

/* Create our new directory under the transaction root, at the path
NEW DI RECTORY. */
SVN ERR (svn_fs nmake dir (txn_root, new directory, pool));

/* Commt the transaction, creating a new revision of the filesystem
whi ch includes our added directory path. */
err = svn_repos_fs commit_txn (&conflict_str, repos,
&oungest _rev, txn, pool);
if (! err)

/* No error? Excellent! Print a brief report of our success. */
printf ("Directory '%' was successfully added as new revision "
"' d .\n", new directory, youngest_rev);

}
else if (err->apr_err == SVYN_ERR FS_CONFLI CT)
{

168

Developer Information

/* Uh-oh. Qur conmit failed as the result of a conflict
(someone el se seenms to have nade changes to the same area
of the filesystemthat we tried to nodify). Print an error
nessage. */

printf ("A conflict occurred at path '%' while attenpting "

"to add directory '%' to the repository at '%'.\n",
conflict _str, new. directory, repos_path);

}

el se

/* Sonme other error has occurred. Print an error nessage. */
printf ("An error occurred while attenpting to add directory ' %'
"to the repository at '%'.\n",
new_di rectory, repos_path);

}

/* Return the result of the attenpted commit to our caller. */
return err;

In the previous code segment, calls were made to both the repository and filesystem interfaces. We
could just as easily have committed the transaction using svn_fs_conmmit _t xn() . But the filesys-
tem API knows nothing about the repository library's hook mechanism. If you want your Subversion re-
pository to automatically perform some set of non-Subversion tasks every time you commit a transaction
(like, for example, sending an email that describes all the changes made in that transaction to your de-
veloper mailing list), you need to use the libsvn reposwrapped version of that
function—svn_repos_fs_comm t _t xn() . Thisfunction will actually first run the pr e- conmi t

hook script if one exists, then commit the transaction, and finally will run apost - conmi t hook script.
The hooks provide a special kind of reporting mechanism that does not really belong in the core filesys-
tem library itself. (For more information regarding Subversion's repository hooks, see the section called
“Hook Scripts’.)

The hook mechanism requirement is but one of the reasons for the abstraction of a separate repository

library from the rest of the filesystem code. The libsvn_repos APl provides several other important util-
ities to Subversion. These include the abilities to:

1. create, open, destroy, and perform recovery steps on a Subversion repository and the filesystem in-
cluded in that repository.
2. describe the differences between two filesystem trees.

3. query for the commit log messages associated with al (or some) of the revisions in which a set of
fileswas modified in the filesystem.

4. generate a human-readable “dump” of the filesystem, a complete representation of the revisionsin
the filesystem.

5. parsethat dump format, loading the dumped revisions into a different Subversion repository.

As Subversion continues to evolve, the repository library will grow with the filesystem library to offer
increased functionality and configurable option support.

Repository Access Layer

If the Subversion Repository Layer is at “the other end of the line”, the Repository Access Layer is the
line itself. Charged with marshalling data between the client libraries and the repository, this layer in-

169

Developer Information

cludes the libsvn_ra module loader library, the RA modules themselves (which currently includes libs-
vn_ra dav, libsvn_ra local, and libsvn_ra svn), and any additional libraries needed by one or more of
those RA modules, such as the mod_dav_svn Apache module with which libsvn_ra_dav communicates
or libsvn_ra svn's server, svnserve.

Since Subversion uses URL s to identify its repository resources, the protocol portion of the URL schema
(usualy file:, http:, https:, or svn:) is used to determine which RA module will handle the
communications. Each module registers a list of the protocols it knows how to “speak” so that the RA
loader can, at runtime, determine which module to use for the task at hand. You can determine which
RA modules are available to the Subversion command-line client, and what protocols they claim to sup-
port, by running svn --version:

$ svn --version
svn, version 1.2.3 (r15833)
conpi |l ed Sep 13 2005, 22:45:22

Copyright (C) 2000-2005 Col | abNet .
Subversion is open source software, see http://subversion.tigris.org/
This product includes software devel oped by Col |l abNet (http://ww. Col | ab. Net/).

The follow ng repository access (RA) nodul es are avail abl e:

* ra_dav : Mdule for accessing a repository via WbDAV (DeltaV) protocol
- handles 'http' schene
- handl es 'https' schene
* ra_svn : Mdule for accessing a repository using the svn network protocol
- handl es 'svn' schene
* ra_local : Mdule for accessing a repository on |ocal disk.
- handles 'file" schene

RA-DAV (Repository Access Using HTTP/DAV)

Thelibsvn_ra dav library is designed for use by clientsthat are being run on different machines than the
servers with which they communicating, specifically servers reached using URLSs that contain the ht -
tp: or https: protocol portions. To understand how this module works, we should first mention a
couple of other key components in this particular configuration of the Repository Access Layer—the
powerful Apache HTTP Server, and the Neon HTTP/WebDAYV client library.

Subversion's primary network server is the Apache HTTP Server. Apache is a time-tested, extensible
open-source server process that is ready for serious use. It can sustain a high network load and runs on
many platforms. The Apache server supports a number of different standard authentication protocols,
and can be extended through the use of modules to support many others. It also supports optimizations
like network pipelining and caching. By using Apache as a server, Subversion gets all of these features
for free. And since most firewalls already alow HTTP traffic to pass through, system administrators
typically don't even have to change their firewall configurationsto allow Subversion to work.

Subversion uses HTTP and WebDAV (with DeltaV) to communicate with an Apache server. You can
read more about this in the WebDAYV section of this chapter, but in short, WebDAV and DeltaV are ex-
tensions to the standard HTTP 1.1 protocol that enable sharing and versioning of files over the web.
Apache 2.0 and later versions come with mod_dav, an Apache module that understands the DAV exten-
sions to HTTP. Subversion itself supplies mod_dav_svn, though, which is another Apache module that
works in conjunction with (really, as a back-end to) mod_dav to provide Subversion's specific imple-
mentations of WebDAV and DeltaV .

When communicating with a repository over HTTP, the RA loader library chooses libsvn_ra dav asthe
proper access module. The Subversion client makes calls into the generic RA interface, and libs-
vn_ra dav maps those calls (which embody rather large-scale Subversion actions) to a set of HTTP/

170

Developer Information

WebDAYV requests. Using the Neon library, libsvn_ra_dav transmits those requests to the Apache server.
Apache receives these requests (exactly as it does generic HTTP requests that your web browser might
make), notices that the requests are directed at a URL that is configured as a DAV location (using the
<Locat i on> directive in ht't pd. conf), and hands the request off to its own mod_dav module.
When properly configured, mod dav knows to use Subversion's mod dav_svn for any filesystem-re-
lated needs, as opposed to the generic mod_dav_fs that comes with Apache. So ultimately, the client is
communicating with mod_dav_svn, which binds directly to the Subversion Repository Layer.

That was asimplified description of the actual exchanges taking place, though. For example, the Subver-
sion repository might be protected by Apache's authorization directives. This could result in initial at-
tempts to communicate with the repository being rejected by Apache on authorization grounds. At this
point, libsvn_ra_dav gets back the notice from Apache that insufficient identification was supplied, and
calls back into the Client Layer to get some updated authentication data. If the datais supplied correctly,
and the user has the permissions that Apache seeks, libsvn_ra_dav's next automatic attempt at perform-
ing the original operation will be granted, and all will be well. If sufficient authentication information
cannot be supplied, the request will ultimately fail, and the client will report the failure to the user.

By using Neon and Apache, Subversion gets free functionality in several other complex aress, too. For
example, if Neon finds the OpenSSL libraries, it alows the Subversion client to attempt to use SSL-
encrypted communications with the Apache server (whose own mod_ssl can “speak the language”).
Also, both Neon itself and Apache's mod_deflate can understand the “deflate” algorithm (the same one
used by the PKZIP and gzip programs), so requests can be sent in smaller, compressed chunks across the
wire. Other complex features that Subversion hopes to support in the future include the ability to auto-
matically handle server-specified redirects (for example, when a repository has been moved to a new ca-
nonical URL) and taking advantage of HTTP pipelining.

RA-SVN (Custom Protocol Repository Access)

In addition to the standard HTTP/WebDAV protocol, Subversion also provides an RA implementation
that uses a custom protocol. The libsvn_ra_svn module implements its own network socket connectivity,
and communicates with a stand-alone server—the svnser ve program—on the machine that hosts the
repository. Clients access the repository using thesvn: / / schema.

This RA implementation lacks most of the advantages of Apache mentioned in the previous section;
however, it may be appealing to some system administrators nonetheless. It is dramatically easier to
configure and run; setting up an svnser ve process is nearly instantaneous. It is also much smaller (in
terms of lines of code) than Apache, making it much easier to audit, for security reasons or otherwise.
Furthermore, some system administrators may already have an SSH security infrastructure in place, and
want Subversion to useit. Clients using ra_svn can easily tunnel the protocol over SSH.

RA-Local (Direct Repository Access)

Not al communications with a Subversion repository require a powerhouse server process and a net-
work layer. For users who simply wish to access the repositories on their local disk, they may do so us-
ing file: URLs and the functionality provided by libsvn _ra local. This RA module binds directly
with the repository and filesystem libraries, so no network communication isrequired at all.

Subversion requires that the server name included as part of thef i | e: URL be either | ocal host or
empty, and that there be no port specification. In other words, your URLSs should look like either
file://1ocal host/path/to/reposorfile:///path/tolrepos.

Also, be aware that Subversion'sfi | e: URLSs cannot be used in aregular web browser the way typical
file: URLscan. When you attempt to view af i | e: URL inaregular web browser, it reads and dis-
plays the contents of the file at that location by examining the filesystem directly. However, Subver-
sion's resources exist in a virtual filesystem (see the section called “Repository Layer”), and your
browser will not understand how to read that filesystem.

171

Developer Information

Your RA Library Here

For those who wish to access a Subversion repository using still another protocol, that is precisely why
the Repository Access Layer is modularized! Developers can simply write anew library that implements
the RA interface on one side and communicates with the repository on the other. Y our new library can
use existing network protocols, or you can invent your own. Y ou could use inter-process communication
(IPC) calls, or—let's get crazy, shall we?—you could even implement an email-based protocol. Subver-
sion supplies the APIs; you supply the creativity.

Client Layer

On the client side, the Subversion working copy is where al the action takes place. The bulk of func-
tionality implemented by the client-side libraries exists for the sole purpose of managing working cop-
ies—directories full of files and other subdirectories which serve as a sort of local, editable “reflection”
of one or more repository locations—and propagating changes to and from the Repository Access layer.

Subversion's working copy library, libsvn_wc, is directly responsible for managing the data in the work-
ing copies. To accomplish this, the library stores administrative information about each working copy
directory within a special subdirectory. This subdirectory, named . svn, is present in each working copy
directory and contains various other files and directories which record state and provide a private work-
space for administrative action. For those familiar with CV'S, this. svn subdirectory is similar in pur-
pose to the CVS administrative directories found in CVS working copies. For more information about
the . svn administrative area, see the section called “Inside the Working Copy Administration Ared’in
this chapter.

The Subversion client library, libsvn_client, has the broadest responsibility; its job isto mingle the func-
tionality of the working copy library with that of the Repository Access Layer, and then to provide the
highest-level API to any application that wishes to perform genera revision control actions. For ex-
ample, the function svn_cl i ent _checkout () takes a URL as an argument. It passes this URL to
the RA layer and opens an authenticated session with a particular repository. It then asks the repository
for a certain tree, and sends this tree into the working copy library, which then writes a full working
copy to disk (. svn directoriesand all).

The client library is designed to be used by any application. While the Subversion source code includes
a standard command-line client, it should be very easy to write any number of GUI clients on top of the
client library. New GUIs (or any new client, really) for Subversion need not be clunky wrappers around
the included command-line client—they have full access viathe libsvn_client API to same functionality,
data, and callback mechanisms that the command-line client uses.

Binding Directly—A Word About Correctness

Why should your GUI program bind directly with a libsvn_client instead of acting as a wrapper around a
command-line program? Besides simply being more efficient, this can address potential correctness issues as
well. A command-line program (like the one supplied with Subversion) that binds to the client library needs
to effectively trandlate feedback and requested data bits from C types to some form of human-readable output.
This type of trandation can be lossy. That is, the program may not display all of the information harvested
from the API, or may combine bits of information for compact representation.

If you wrap such a command-line program with yet another program, the second program has access only to
already-interpreted (and as we mentioned, likely incomplete) information, which it must again trandate into
its representation format. With each layer of wrapping, the integrity of the original data is potentially tainted
more and more, much like the result of making a copy of a copy (of a copy ...) of afavorite audio or video
cassette.

172

Developer Information

Using the APIs

Developing applications against the Subversion library APIs is fairly straightforward. All of the public
header fileslivein the subver si on/ i ncl ude directory of the source tree. These headers are copied
into your system locations when you build and install Subversion itself from source. These headers rep-
resent the entirety of the functions and types meant to be accessible by users of the Subversion libraries.

The first thing you might notice is that Subversion's datatypes and functions are hamespace protected.
Every public Subversion symbol name begins with svn_, followed by a short code for the library in
which the symboal is defined (such aswc, cli ent, f s, etc.), followed by a single underscore (_) and
then the rest of the symbol name. Semi-public functions (used among source files of a given library but
not by code outside that library, and found inside the library directories themselves) differ from this
naming scheme in that instead of a single underscore after the library code, they use a double underscore
(__). Functionsthat are private to a given source file have no special prefixing, and are declared st at -

i ¢. Of course, acompiler isn't interested in these naming conventions, but they help to clarify the scope
of agiven function or datatype.

The Apache Portable Runtime Library

Along with Subversion's own datatypes, you will see many references to datatypes that begin with
apr _—symbols from the Apache Portable Runtime (APR) library. APR is Apache's portability library,
originally carved out of its server code as an attempt to separate the OS-specific bits from the OS-
independent portions of the code. The result was alibrary that provides a generic API for performing op-
erations that differ mildly—or wildly—from OS to OS. While the Apache HTTP Server was obviously
the first user of the APR library, the Subversion developers immediately recognized the value of using
APR as well. This means that there are practically no OS-specific code portions in Subversion itself.
Also, it means that the Subversion client compiles and runs anywhere that the server does. Currently this
list includes al flavors of Unix, Win32, BeOS, 0S/2, and Mac OS X.

In addition to providing consistent implementations of system calls that differ across operating systems,
2 APR gives Subversion immediate access to many custom datatypes, such as dynamic arrays and hash
tables. Subversion uses these types extensively throughout the codebase. But perhaps the most pervasive
APR datatype, found in nearly every Subversion API prototype, is the apr_pool_t—the APR memory
pool. Subversion uses pools internally for all its memory allocation needs (unless an externa library re-
quires a different memory management schema for data passed through its API), 3 and while a person
coding against the Subversion APIs is not required to do the same, they are required to provide pools to
the API functions that need them. This means that users of the Subversion APl must also link against
APR, must call apr _initialize() toinitialize the APR subsystem, and then must acquire a pool
for use with Subversion API calls. See the section called “Programming with Memory Pools’ for more
information.

URL and Path Requirements

With remote version control operation as the whole point of Subversion's existence, it makes sense that
some attention has been paid to internationalization (i18n) support. After al, while “remote” might
mean “across the office”, it could just as well mean “across the globe.” To facilitate this, al of Subver-
sion's public interfaces that accept path arguments expect those paths to be canonicalized, and encoded
in UTF-8. This means, for example, that any new client binary that drives the libsvn_client interface
needs to first convert paths from the locale-specific encoding to UTF-8 before passing those paths to the
Subversion libraries, and then re-convert any resultant output paths from Subversion back into the loc-
ale's encoding before using those paths for non-Subversion purposes. Fortunately, Subversion provides a
suite of functions (see subver si on/ i ncl ude/ svn_ut f . h) that can be used by any program to do
these conversions.

2subversion uses ANSI system calls and datatypes as much as possible.
Neon and Berkeley DB are examples of such libraries,

173

Developer Information

Also, Subversion APIs require all URL parameters to be properly URI-encoded. So, instead of passing
file:///home/usernane/ My File.txt astheURL of afilenamed My Fil e.t xt, you need
to passfile:///home/usernane/ My%0Fi | e. t xt. Again, Subversion supplies helper func-
tions that your application can use—svn_pat h_uri _encode() and
svn_pat h_uri _decode(), for URI encoding and decoding, respectively.

Using Languages Other than C and C++

If you are interested in using the Subversion libraries in conjunction with something other than a C pro-
gram—say a Python or Perl script—Subversion has some support for this via the Simplified Wrapper
and Interface Generator (SWIG). The SWIG bindings for Subversion are located in subver si on/ bi nd-
i ngs/ swi g and whilst still maturing, they are in a usable state. These bindings alow you to call Sub-
version API functions indirectly, using wrappers that translate the datatypes native to your scripting lan-
guage into the datatypes needed by Subversion's C libraries.

There is an obvious benefit to accessing the Subversion APIs via a language binding—simplicity. Gen-
erally spesking, languages such as Python and Perl are much more flexible and easy to use than C or
C++. The sort of high-level datatypes and context-driven type checking provided by these languages are
often better at handling information that comes from users. As you know, humans are proficient at
botching up input to a program, and scripting languages tend to handle that misinformation more grace-
fully. Of course, often that flexibility comes at the cost of performance. That is why using a tightly-
optimized, C-based interface and library suite, combined with a powerful, flexible binding language, is
so appealing.

Let's look at a sample program that uses Subversion's Python SWIG bindings to recursively crawl the
youngest repository revision, and print the various paths reached during the crawl.

Example 8.2. Using the Repository L ayer with Python

#!/ usr/ bi n/ pyt hon

"""Crawl a repository, printing versioned object path nanes."""

i mport sys
i mport os.path
i mport svn.fs, svn.core, svn.repos

def crawl _filesystemdir(root, directory, pool):
"""Recursively crawm DI RECTORY under ROOT in the filesystem and return
alist of all the paths at or bel ow DI RECTORY. Use POOL for all
al l ocations. """

Print the nanme of this path.
print directory + "/"

CGet the directory entries for Dl RECTORY.
entries = svn.fs.svn_fs dir_entries(root, directory, pool)

Use an iteration subpool.
subpool = svn.core.svn_pool _create(pool)

Loop over the entries.

nanes = entries. keys()

for nane