
  

Where Does the Energy Go?

Ulrich Drepper 
Consulting Engineer, Red Hat
2010-6-24



Energy Use

● 3 different, average machines

● 24 hours operation at $0.21/kWh

● Often ~14 hours per day unused

● Waste of $108, $311, and $18 per year respectively

idle CPU load Memory load
W ¢/day W ¢/day W ¢/day

101 50.9 127 64.01 136 68.54

290 146.16 320 161.28 525 264.6

Laptop, UP, dual core 17 8.57 24 12.1 29 14.62

Desktop, UP, dual 
core, 1 disk
Server, 4 sockets, 
quad core, 2 disks



Real World Loads

● Achieve 100% loaded machines
● Program efficiently to minimize number of machines
● Parallel programming: OpenMP
● CMP mostly more efficient than SMP: two cores need 

less thanhalf the power of two sockets

● Normal case: «100% loaded
● In practice not as idle as possible
● Even if it is

● Suspension or even hibernation is better



Northbridge

CPU
w/out cooler

Southbridge

RAM
sometimes 
with cooler



Individual Components

● Disk: idle 5W, in use 15W

● RAM: idle 3W per module, in use 6W (667MHz DDR2)
● More expensive for faster RAM

● Linear for same voltage, faster speeds require higher voltage

● Graphics card 10-40W idle, some 100+W in use

● Displays (LCD, what else today?)
● 20”: 6W in standby, 50W in use
● 30”: 8W in standby, 100W in use



CPU-related Costs

● Intel Core 2, dual core, 2.93GHz, 75W TDP, 0.85V to 1.3625V

● Sometimes still external memory controller

● Multi-core problems:

● One core can be running while other is idle
● Shared (un-core) resources must work normally
● Cache snooping must continue to work

● Other motherboard components:

● Southbridge (I/O controller)
● Voltage regulator



Processor P-States

● Variable frequency for 
processor core

● Avaialble in almost all 
processors

● Often from 50% of 
maximum in 4 or more 
step

● With reduced frequency 
lower core voltage

● Entire socket affected
F

re
q

u
en

cy

      
  

Energy

Superlinear w/
voltage change

Linear w/out
voltage change

P
0

P
n



Processor C-States

● Goal: power down part of the system

● C0: running system

● C1: power down core resources

● C2-C4: power down un-core 
resources

● Cores select level independently

● Transitions

● In hardware
● Take time and energy

● Relative to level

Execution
Unit

Execution
Unit

L1 Cache
L1 Cache

Execution
Unit

Execution
Unit

L1 Cache
L1 Cache

Interrupt handling &c
Interrupt handling &c

L2 Cache
L2 Cache

Bus Interface
Bus Interface

Core 1 Core 2

C-State Max Power Consumption
C0 35 W
C1 13.5 W
C2 12.9 W
C3 7.7 W
C4 1.2 W

Un-Core



CPU Throttling?

● How about distributing 
work evenly over time?

● Lower frequency lowers 
power

● Even superlinear
● Not enough compensation 

for change of C-State

Energy=∫
t

Power dt

P
o

w
e

r

Time

P
o

w
e

r

Time

f

f/2

P
0
/C

0

P
1
/C

0

P
n
/C

4

P
n
/C

4



Lack of Parallelism

● Similar to P-State change

● One core busy, other not

● C
1
 and C

0

● Small energy saving by C
1

● Cores share clock: P
0

● Even with less than optimal 
scaling multi-threaded code is 
better

P
o

w
e

r

Time

P
o

w
e

r

Time

P
0
/C

0

P
0
/C

1

P
0
/C

0

P
n
/C

4

P
n
/C

4



First Conclusions

● Get the work done as quickly as possible

● Frequency scaling mostly not a good idea
● As soon as nothing is left to to

● Scale frequency (P-State), put system to sleep (C
1
-C

4
)

● Wake up as rarely as possible

● Wakeups require energy
● Do not poll in programs

● React to events
● Consolidate wakeups



Linux Energy Conservation

● “tick-less” kernel

● No regular wakeups (100/1000Hz) anymore
● Wakeup only in time for next deadline

● Moving up the stack

● Fix system application
● Remove polling and regular timeouts

● Optimize
● Avoid unnecessary work
● Parallelize



Linux Energy Conservation

● CPU Frequency scalers
● Reasonable default policies
● Some people turn off because of latency

● Screensaver
● DPMS supports turning off monitor
● Ideally turns off monitor



Problems of Today's Systems

● Even if memory banks can be disabled, evacuating DRAM 
modules difficult and not well supported

● DPMS might be disabled, misconfigured, not supported

● No central screensaver setting for organization

● Running animated saver requires additional 30-40W
● Insufficient event handling interface

● Many programs still poll or wake up frequently
● Mostly inexcusable
● Sometimes because interfaces missing

● Event handling kernel interfaces have been proposed



Help from SystemTap

● Scriptable instrumentation of kernel (and userlevel)

● For instance:

● Track all places with timeout
● Record by process ID and program name

probe kernel.function("do_sys_poll").return {

  if ($return == 0) {

    p = pid()

    if (!(p in process))

      process[p] = execname()

    poll_timeouts[p]++

  }

}



Results from Fedora (7 seconds)



Limitations of Existing Hardware

● Even with P- and C-State only ~40% reduction compared to peak

● Still 100W for small-ish desktop machine

● Only way forward: turn more off

● Increases latency
● Might need new hardware support
● Sometimes complicated software support
● Possibilities

● Spin down harddrive (latency, maybe reduce lifetime)
● USB, Sound

● Future: turn off parts of DRAM



Best Practices I

● Size the computer correctly

● Easily powerful enough for most tasks
● The larger, the more energy
● Bigger graphic means more energy
● Faster RAM means more energy

● Use alternatives to general purpose processor

● FPGA: 1/10th of the energy, potentially 100x faster
● With appropriate power control:

● GPUs: 1x to 3x energy, 20x to 50x performance



Determine Machine Size

● If workload is known to be 
bounded

● Determine maximum 
accepted workload

● Determine 
parallelization overhead 
(here: 90% efficient)

● Determine single-socket 
performance

● Look up number of 
CPUs needed

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

8

Workload

N
um

b
e

r 
P

ro
ce

ss
o

rs

Not Really 
Practical



Maximum Speed-Up

● Utilizing more execution units 
is not free

● Overhead through

● Synchronization
● Communication
● Interference

● Scales with number of units

● Independent of parallelization 
potential

● Model: Overhead=1−EfficiencyN

0% 20% 40% 60% 80% 100%
0

5

10

15

20

25

Theoret ical Speed-Up

Efficiency of Scaling
N

u
m

be
r 

o
f 

P
ro

ce
ss

o
rs



Best Practices II

● Turn the machine off/suspend whenever possible

● Suspension: 5-10W
● Off: 0W  ☺

● Wakeup

● Scheduled in BIOS
● Wake-On-Lan
● IPMI, AMT
● X10 or equivalent
● Or: just press button to turn on



Challenges With Shutdown

● Reliability of suspension

● Red Hat's experience with OLPC helps
● Central policy and management for shutdown/suspend

● Startup time:

● 60 secs (for desktop) to several minutes for big servers
● Significant improvements post RHEL5
● By Fedora 10/11: service startup on demand

● IPMI & AMT consoles available

● System administration of offline machines



Desktop Virtualization

● Keep installation around when hardware is offline:
● Use virtualization on all machines
● Move image into cloud, then offline machine
● System management on image in cloud
● Restore from cloud on startup/resume

● Problem: device virtualization
● In cloud no devices available
● Must have direct access to video hardware



Best Practices III

● Stateless machines (desktop and server)

● Store all data centrally
● Limited hardware requirements locally
● Even less requirement with virtual desktop infrastructure (VDI)

● Not much local CPU power or DRAM needed
● VDI desktop:

● Low-power / notebook processor, small graphics card
● No spinning media, small NVRAM
● ~15W idle power vs 100W for today's desktop
● Central big servers



Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

