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Energy Use

● 3 different, average machines

● 24 hours operation at $0.21/kWh

● Often ~14 hours per day unused

● Waste of $108, $311, and $18 per year respectively

idle CPU load Memory load
W ¢/day W ¢/day W ¢/day

101 50.9 127 64.01 136 68.54

290 146.16 320 161.28 525 264.6

Laptop, UP, dual core 17 8.57 24 12.1 29 14.62

Desktop, UP, dual 
core, 1 disk
Server, 4 sockets, 
quad core, 2 disks



Real World Loads

● Achieve 100% loaded machines
● Program efficiently to minimize number of machines
● Parallel programming: OpenMP
● CMP mostly more efficient than SMP: two cores need 

less thanhalf the power of two sockets

● Normal case: «100% loaded
● In practice not as idle as possible
● Even if it is

● Suspension or even hibernation is better



Northbridge

CPU
w/out cooler

Southbridge

RAM
sometimes 
with cooler



Individual Components

● Disk: idle 5W, in use 15W

● RAM: idle 3W per module, in use 6W (667MHz DDR2)
● More expensive for faster RAM

● Linear for same voltage, faster speeds require higher voltage

● Graphics card 10-40W idle, some 100+W in use

● Displays (LCD, what else today?)
● 20”: 6W in standby, 50W in use
● 30”: 8W in standby, 100W in use



CPU-related Costs

● Intel Core 2, dual core, 2.93GHz, 75W TDP, 0.85V to 1.3625V

● Sometimes still external memory controller

● Multi-core problems:

● One core can be running while other is idle
● Shared (un-core) resources must work normally
● Cache snooping must continue to work

● Other motherboard components:

● Southbridge (I/O controller)
● Voltage regulator



Processor P-States

● Variable frequency for 
processor core

● Avaialble in almost all 
processors

● Often from 50% of 
maximum in 4 or more 
step

● With reduced frequency 
lower core voltage

● Entire socket affected
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Processor C-States

● Goal: power down part of the system

● C0: running system

● C1: power down core resources

● C2-C4: power down un-core 
resources

● Cores select level independently

● Transitions

● In hardware
● Take time and energy

● Relative to level

Execution
Unit

Execution
Unit

L1 Cache
L1 Cache

Execution
Unit

Execution
Unit

L1 Cache
L1 Cache

Interrupt handling &c
Interrupt handling &c

L2 Cache
L2 Cache

Bus Interface
Bus Interface

Core 1 Core 2

C-State Max Power Consumption
C0 35 W
C1 13.5 W
C2 12.9 W
C3 7.7 W
C4 1.2 W

Un-Core



CPU Throttling?

● How about distributing 
work evenly over time?

● Lower frequency lowers 
power

● Even superlinear
● Not enough compensation 

for change of C-State
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Lack of Parallelism

● Similar to P-State change

● One core busy, other not

● C
1
 and C

0

● Small energy saving by C
1

● Cores share clock: P
0

● Even with less than optimal 
scaling multi-threaded code is 
better
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First Conclusions

● Get the work done as quickly as possible

● Frequency scaling mostly not a good idea
● As soon as nothing is left to to

● Scale frequency (P-State), put system to sleep (C
1
-C

4
)

● Wake up as rarely as possible

● Wakeups require energy
● Do not poll in programs

● React to events
● Consolidate wakeups



Linux Energy Conservation

● “tick-less” kernel

● No regular wakeups (100/1000Hz) anymore
● Wakeup only in time for next deadline

● Moving up the stack

● Fix system application
● Remove polling and regular timeouts

● Optimize
● Avoid unnecessary work
● Parallelize



Linux Energy Conservation

● CPU Frequency scalers
● Reasonable default policies
● Some people turn off because of latency

● Screensaver
● DPMS supports turning off monitor
● Ideally turns off monitor



Problems of Today's Systems

● Even if memory banks can be disabled, evacuating DRAM 
modules difficult and not well supported

● DPMS might be disabled, misconfigured, not supported

● No central screensaver setting for organization

● Running animated saver requires additional 30-40W
● Insufficient event handling interface

● Many programs still poll or wake up frequently
● Mostly inexcusable
● Sometimes because interfaces missing

● Event handling kernel interfaces have been proposed



Help from SystemTap

● Scriptable instrumentation of kernel (and userlevel)

● For instance:

● Track all places with timeout
● Record by process ID and program name

probe kernel.function("do_sys_poll").return {

  if ($return == 0) {

    p = pid()

    if (!(p in process))

      process[p] = execname()

    poll_timeouts[p]++

  }

}



Results from Fedora (7 seconds)



Limitations of Existing Hardware

● Even with P- and C-State only ~40% reduction compared to peak

● Still 100W for small-ish desktop machine

● Only way forward: turn more off

● Increases latency
● Might need new hardware support
● Sometimes complicated software support
● Possibilities

● Spin down harddrive (latency, maybe reduce lifetime)
● USB, Sound

● Future: turn off parts of DRAM



Best Practices I

● Size the computer correctly

● Easily powerful enough for most tasks
● The larger, the more energy
● Bigger graphic means more energy
● Faster RAM means more energy

● Use alternatives to general purpose processor

● FPGA: 1/10th of the energy, potentially 100x faster
● With appropriate power control:

● GPUs: 1x to 3x energy, 20x to 50x performance



Determine Machine Size

● If workload is known to be 
bounded

● Determine maximum 
accepted workload

● Determine 
parallelization overhead 
(here: 90% efficient)

● Determine single-socket 
performance

● Look up number of 
CPUs needed
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Maximum Speed-Up

● Utilizing more execution units 
is not free

● Overhead through

● Synchronization
● Communication
● Interference

● Scales with number of units

● Independent of parallelization 
potential

● Model: Overhead=1−EfficiencyN
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Best Practices II

● Turn the machine off/suspend whenever possible

● Suspension: 5-10W
● Off: 0W  ☺

● Wakeup

● Scheduled in BIOS
● Wake-On-Lan
● IPMI, AMT
● X10 or equivalent
● Or: just press button to turn on



Challenges With Shutdown

● Reliability of suspension

● Red Hat's experience with OLPC helps
● Central policy and management for shutdown/suspend

● Startup time:

● 60 secs (for desktop) to several minutes for big servers
● Significant improvements post RHEL5
● By Fedora 10/11: service startup on demand

● IPMI & AMT consoles available

● System administration of offline machines



Desktop Virtualization

● Keep installation around when hardware is offline:
● Use virtualization on all machines
● Move image into cloud, then offline machine
● System management on image in cloud
● Restore from cloud on startup/resume

● Problem: device virtualization
● In cloud no devices available
● Must have direct access to video hardware



Best Practices III

● Stateless machines (desktop and server)

● Store all data centrally
● Limited hardware requirements locally
● Even less requirement with virtual desktop infrastructure (VDI)

● Not much local CPU power or DRAM needed
● VDI desktop:

● Low-power / notebook processor, small graphics card
● No spinning media, small NVRAM
● ~15W idle power vs 100W for today's desktop
● Central big servers



Questions?
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