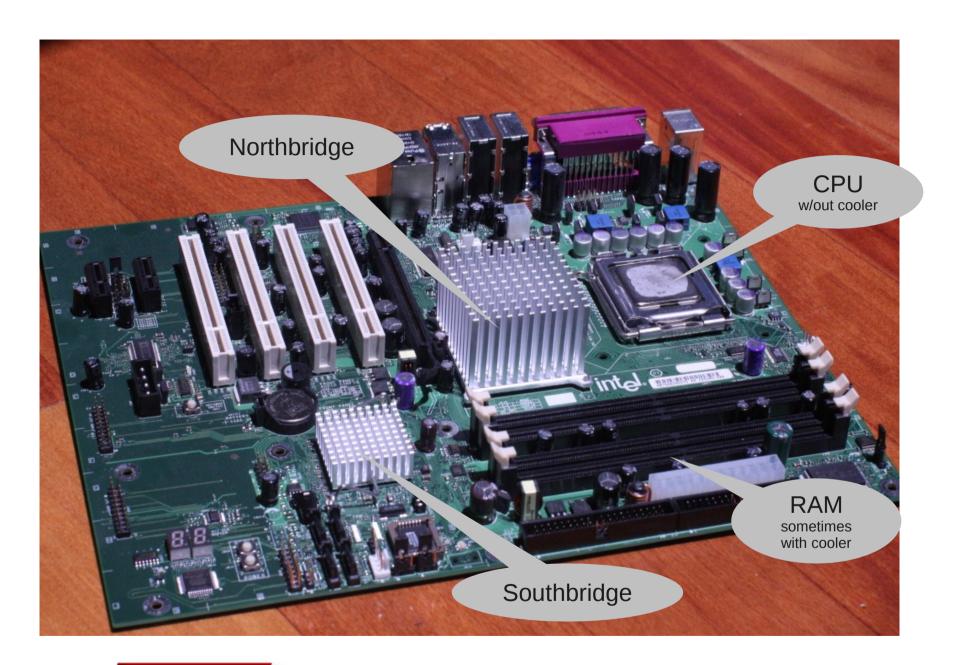
Where Does the Energy Go?

Ulrich Drepper Consulting Engineer, Red Hat 2010-6-24

Energy Use

	idle		CPU	load	Memory load	
	W	¢/day	W	¢/day	W	¢/day
Desktop, UP, dual core, 1 disk	101	50.9	127	64.01	136	68.54
Server, 4 sockets, quad core, 2 disks	290	146.16	320	161.28	525	264.6
Laptop, UP, dual core	17	8.57	24	12.1	29	14.62

- 3 different, average machines
- 24 hours operation at \$0.21/kWh
- Often ~14 hours per day unused
- Waste of \$108, \$311, and \$18 per year respectively



Real World Loads

- Achieve 100% loaded machines
 - Program efficiently to minimize number of machines
 - Parallel programming: OpenMP
 - CMP mostly more efficient than SMP: two cores need less thanhalf the power of two sockets
- Normal case: «100% loaded
 - In practice not as idle as possible
 - Even if it is
 - Suspension or even hibernation is better

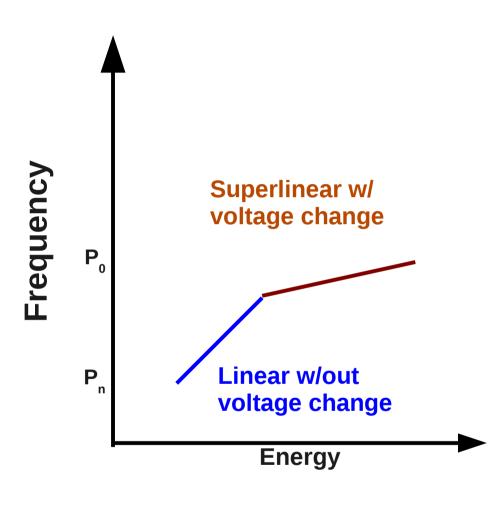
SUMIT

JBoss WORLD

Individual Components

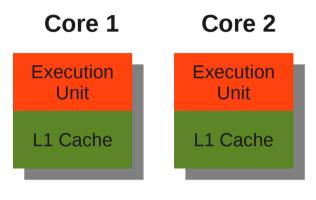
- Disk: idle 5W, in use 15W
- RAM: idle 3W per module, in use 6W (667MHz DDR2)
 - More expensive for faster RAM
 - Linear for same voltage, faster speeds require higher voltage
- Graphics card 10-40W idle, some 100+W in use
- Displays (LCD, what else today?)
 - 20": 6W in standby, 50W in use
 - 30": 8W in standby, 100W in use

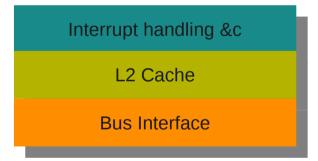
CPU-related Costs


- Intel Core 2, dual core, 2.93GHz, 75W TDP, 0.85V to 1.3625V
- Sometimes still external memory controller
- Multi-core problems:
 - One core can be running while other is idle
 - Shared (un-core) resources must work normally
 - Cache snooping must continue to work
- Other motherboard components:
 - Southbridge (I/O controller)
 - Voltage regulator

Processor P-States

- Variable frequency for processor core
 - Avaialble in almost all processors
 - Often from 50% of maximum in 4 or more step
 - With reduced frequency lower core voltage
- Entire socket affected



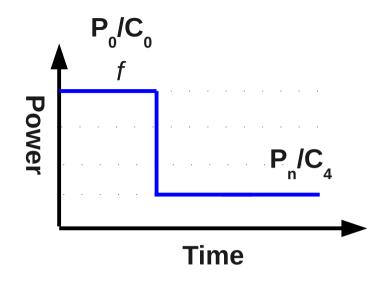


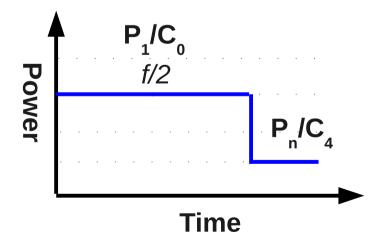
Processor C-States

- Goal: power down part of the system
- C0: running system
- C1: power down core resources
- C2-C4: power down un-core resources
- Cores select level independently
- Transitions
 - In hardware
 - Take time and energy
 - Relative to level

Un-Core

C-State	Max Power Consumption
C0	35 W
C1	13.5 W
C2	12.9 W
C3	7.7 W
C4	1.2 W

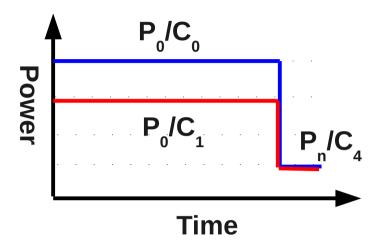


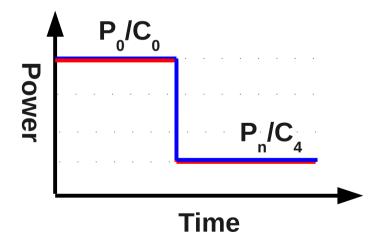

CPU Throttling?

 How about distributing work evenly over time?

$$Energy = \int_{t} Power dt$$

- Lower frequency lowers power
 - Even superlinear
- Not enough compensation for change of C-State





Lack of Parallelism

- Similar to P-State change
- One core busy, other not
 - C₁ and C₀
 - Small energy saving by C₁
 - Cores share clock: P_o
- Even with less than optimal scaling multi-threaded code is better

First Conclusions

- Get the work done as quickly as possible
 - Frequency scaling mostly not a good idea
- As soon as nothing is left to to
 - Scale frequency (P-State), put system to sleep (C₁-C₄)
- Wake up as rarely as possible
 - Wakeups require energy
 - Do not poll in programs
 - React to events
 - Consolidate wakeups

Linux Energy Conservation

- "tick-less" kernel
 - No regular wakeups (100/1000Hz) anymore
 - Wakeup only in time for next deadline
- Moving up the stack
 - Fix system application
 - Remove polling and regular timeouts
 - Optimize
 - Avoid unnecessary work
 - Parallelize

Linux Energy Conservation

- CPU Frequency scalers
 - Reasonable default policies
 - Some people turn off because of latency
- Screensaver
 - DPMS supports turning off monitor
 - Ideally turns off monitor

Problems of Today's Systems

- Even if memory banks can be disabled, evacuating DRAM modules difficult and not well supported
- DPMS might be disabled, misconfigured, not supported
- No central screensaver setting for organization
 - Running animated saver requires additional 30-40W
- Insufficient event handling interface
 - Many programs still poll or wake up frequently
 - Mostly inexcusable
 - Sometimes because interfaces missing
 - Event handling kernel interfaces have been proposed

Help from SystemTap

- Scriptable instrumentation of kernel (and userlevel)
- For instance:
 - Track all places with timeout
 - Record by process ID and program name

```
probe kernel.function("do_sys_poll").return {
  if ($return == 0) {
    p = pid()
    if (!(p in process))
       process[p] = execname()
    poll_timeouts[p]++
  }
}
```


JBoss WORLD

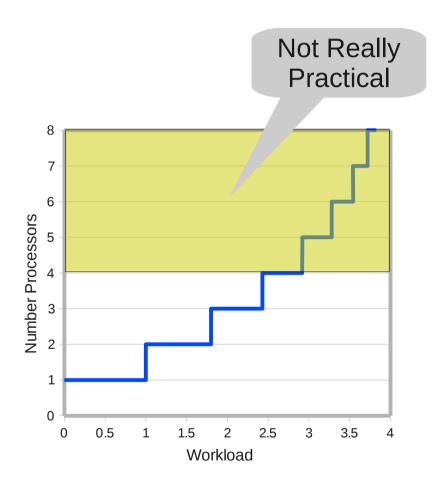
Results from Fedora (7 seconds)

		x61:/h	ome/	dreppe	r/redh	at		+ ×
x61:/	home/dr	ер 🗶	x61:/	usr/src/	de	⊠ drep	per@mywa	🗶
uid l	poll	select	epoll	itimer	futex	nanosleel	process	_
3662 I	2661	1331	0	0	0		npviewer₊bin	
3271 I	62	120	0	Q.	58	01	firefox	
5787 I	248	0	0	0	0	01	simpress.bin	
2723 I	2	12	0	1	0	01	Xorg	
3074 I	64	0	0	0	0	21	gnome-termina]	
12669 I	34	0	0	0	0	01	stapio	
2132 I	0	0	0	0	6	01	automount	
4430 I	2	0	0	0	30	01	thunderbird-bi	in 📗
3035 I	22	0	0	0	0	01	pulseaudio	
2150 l	6	0	0	0	0	01	setroubleshoot	:d
2467 I	9	0	0	0	0	01	hald	
2471 I	1	0	0	0	0	01	hald-runner	
2619 I	7	0	0	0	0	01	NetworkManager	.
3135 I	4	0	0	0	0	01	gpk-update-ico	on 📗
3066 I	4	0	0	0	0	01	gnome-panel	
3131 I	2	0	0	0	0	01	nm-applet	
3124 I	2	0	0	0	0	01	krb5-auth-dia]	lo 📗
3136 I	4	0	0	0	0	01	gnome-power-ma	an 📗
2722	2	0	0	0	0	01		
3077 I	2	0	0	Q.	0	01	Ďluetooth-app]	
2629 I	2	0	0	0	0	01	nm-system-sett	100.000
2632 I	2	0	0	Q.	0	01	gdm-Ďinary	
2470 I	2	0	0	0	0	01	console-kit-da	ae 🔽

Limitations of Existing Hardware

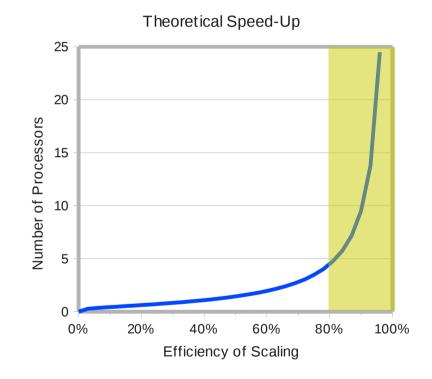
- Even with P- and C-State only ~40% reduction compared to peak
- Still 100W for small-ish desktop machine
- Only way forward: turn more off
 - Increases latency
 - Might need new hardware support
 - Sometimes complicated software support
 - Possibilities
 - Spin down harddrive (latency, maybe reduce lifetime)
 - USB, Sound
 - Future: turn off parts of DRAM

Best Practices I


- Size the computer correctly
 - Easily powerful enough for most tasks
 - The larger, the more energy
 - Bigger graphic means more energy
 - Faster RAM means more energy
- Use alternatives to general purpose processor
 - FPGA: 1/10th of the energy, potentially 100x faster
 - With appropriate power control:
 - GPUs: 1x to 3x energy, 20x to 50x performance

Determine Machine Size

- If workload is known to be bounded
 - Determine maximum accepted workload
 - Determine parallelization overhead (here: 90% efficient)
 - Determine single-socket performance
 - Look up number of CPUs needed



Maximum Speed-Up

- Utilizing more execution units is not free
- Overhead through
 - Synchronization
 - Communication
 - Interference
- Scales with number of units
- Independent of parallelization potential
- Model: Overhead= $1-Efficiency^N$

Best Practices II

- Turn the machine off/suspend whenever possible
 - Suspension: 5-10W
 - Off: 0W ☺
- Wakeup
 - Scheduled in BIOS
 - Wake-On-Lan
 - IPMI, AMT
 - X10 or equivalent
 - Or: just press button to turn on

Challenges With Shutdown

- Reliability of suspension
 - Red Hat's experience with OLPC helps
- Central policy and management for shutdown/suspend
- Startup time:
 - 60 secs (for desktop) to several minutes for big servers
 - Significant improvements post RHEL5
 - By Fedora 10/11: service startup on demand
- IPMI & AMT consoles available
- System administration of offline machines

Desktop Virtualization

- Keep installation around when hardware is offline:
 - Use virtualization on all machines
 - Move image into cloud, then offline machine
 - System management on image in cloud
 - Restore from cloud on startup/resume
- Problem: device virtualization
 - In cloud no devices available
 - Must have direct access to video hardware

Best Practices III

- Stateless machines (desktop and server)
 - Store all data centrally
 - Limited hardware requirements locally
 - Even less requirement with virtual desktop infrastructure (VDI)
 - Not much local CPU power or DRAM needed
 - VDI desktop:
 - Low-power / notebook processor, small graphics card
 - No spinning media, small NVRAM
 - ~15W idle power vs 100W for today's desktop
 - Central big servers

Questions?

